PRISM (Polarized Radiation Imaging and Spectroscopy Mission): An extended white paper

Philippe André, Carlo Baccigalupi, Anthony Banday, Domingos Barbosa, Belen Barreiro, James Bartlett, Nicola Bartolo, Elia Battistelli, Richard Battye, George Bendo, Alain Benoît, Jean Philippe Bernard, Marco Bersanelli, Matthieu Béthermin, Pawel Bielewicz, Anna Bonaldi, Fran¸Cois Bouchet, Fran¸Cois Boulanger, Jan Brand, Martin BucherCarlo Burigana, Zhen Yi Cai, Philippe Camus, Francisco Casas, Viviana Casasola, Guillaume Castex, Anthony Challinor, Jens Chluba, Gayoung Chon, Sergio Colafrancesco, Barbara Comis, Francesco Cuttaia, Giuseppe D’alessandro, Antonio Da Silva, Richard Davis, Miguel de Avillez, Paolo de Bernardis, Marco de Petris, Adriano de Rosa, Gianfranco de Zotti, Jacques Delabrouille, Fran¸Cois Xavier Désert, Clive Dickinson, Jose Maria Diego, Joanna Dunkley, Torsten Enßlin, Josquin Errard, Edith Falgarone, Pedro Ferreira, Katia Ferrière, Fabio Finelli, Andrew Fletcher, Pablo Fosalba, Gary Fuller, Silvia Galli, Ken Ganga, Juan García-Bellido, Adnan Ghribi, Martin Giard, Yannick Giraud-Héraud, Joaquin Gonzalez-Nuevo, Keith Grainge, Alessandro Gruppuso, Alex Hall, Jean Christophe Hamilton, Marijke Haverkorn, Carlos Hernandez-Monteagudo, Diego Herranz, Mark Jackson, Andrew Jaffe, Rishi Khatri, Martin Kunz, Luca Lamagna, Massimiliano Lattanzi, Paddy Leahy, Julien Lesgourgues, Michele Liguori, Elisabetta Liuzzo, Marcos Lopez-Caniego, Juan Macias-Perez, Bruno Maffei, Davide Maino, Anna Mangilli, Enrique Martinez-Gonzalez, Carlos J.A.P. Martins, Silvia Masi, Marcella Massardi, Sabino Matarrese, Alessandro Melchiorri, Jean Baptiste Melin, Aniello Mennella, Arturo Mignano, Marc Antoine Miville-Deschênes, Alessandro Monfardini, Anthony Murphy, Pavel Naselsky, Federico Nati, Paolo Natoli, Mattia Negrello, Fabio Noviello, Créidhe O’sullivan, Francesco Paci, Luca Pagano, Rosita Paladino, Nathalie Palanque-Delabrouille, Daniela Paoletti, Hiranya Peiris, Francesca Perrotta, Francesco Piacentini, Michel Piat, Lucio Piccirillo, Giampaolo Pisano, Gianluca Polenta, Agnieszka Pollo, Nicolas Ponthieu, Mathieu Remazeilles, Sara Ricciardi, Matthieu Roman, Cyrille Rosset, Jose Alberto Rubino-Martin, Maria Salatino, Alessandro Schillaci, Paul Shellard, Joseph Silk, Alexei Starobinsky, Radek Stompor, Rashid Sunyaev, Andrea Tartari, Luca Terenzi, Luigi Toffolatti, Maurizio Tomasi, Neil Trappe, Matthieu Tristram, Tiziana Trombetti, Marco Tucci, Rien Van de Weijgaert, Bartjan Van Tent, Licia Verde, Patricio Vielva, Ben Wandelt, Robert Watson, Stafford Withington

Research output: Contribution to journalArticle

176 Scopus citations

Abstract

PRISM (Polarized Radiation Imaging and Spectroscopy Mission) was proposed to ESA in May 2013 as a large-class mission for investigating within the framework of the ESA Cosmic Vision program a set of important scientific questions that require high resolution, high sensitivity, full-sky observations of the sky emission at wavelengths ranging from millimeter-wave to the far-infrared. PRISM's main objective is to explore the distant universe, probing cosmic history from very early times until now as well as the structures, distribution of matter, and velocity flows throughout our Hubble volume. PRISM will survey the full sky in a large number of frequency bands in both intensity and polarization and will measure the absolute spectrum of sky emission more than three orders of magnitude better than COBE FIRAS. The data obtained will allow us to precisely measure the absolute sky brightness and polarization of all the components of the sky emission in the observed frequency range, separating the primordial and extragalactic components cleanly from the galactic and zodiacal light emissions. The aim of this Extended White Paper is to provide a more detailed overview of the highlights of the new science that will be made possible by PRISM, which include: (1) the ultimate galaxy cluster survey using the Sunyaev-Zeldovich (SZ) effect, detecting approximately 106 clusters extending to large redshift, including a characterization of the gas temperature of the brightest ones (through the relativistic corrections to the classic SZ template) as well as a peculiar velocity survey using the kinetic SZ effect that comprises our entire Hubble volume; (2) a detailed characterization of the properties and evolution of dusty galaxies, where the most of the star formation in the universe took place, the faintest population of which constitute the diffuse CIB (Cosmic Infrared Background); (3) a characterization of the B modes from primordial gravity waves generated during inflation and from gravitational lensing, as well as the ultimate search for primordial non-Gaussianity using CMB polarization, which is less contaminated by foregrounds on small scales than the temperature anisotropies; (4) a search for distortions from a perfect blackbody spectrum, which include some nearly certain signals and others that are more speculative but more informative; and (5) a study of the role of the magnetic field in star formation and its interaction with other components of the interstellar medium of our Galaxy. These are but a few of the highlights presented here along with a description of the proposed instrument.

Original languageEnglish (US)
Article number006
JournalJournal of Cosmology and Astroparticle Physics
Volume2014
Issue number2
DOIs
StatePublished - Feb 1 2014
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics

Fingerprint Dive into the research topics of 'PRISM (Polarized Radiation Imaging and Spectroscopy Mission): An extended white paper'. Together they form a unique fingerprint.

  • Cite this

    André, P., Baccigalupi, C., Banday, A., Barbosa, D., Barreiro, B., Bartlett, J., Bartolo, N., Battistelli, E., Battye, R., Bendo, G., Benoît, A., Bernard, J. P., Bersanelli, M., Béthermin, M., Bielewicz, P., Bonaldi, A., Bouchet, FC., Boulanger, FC., Brand, J., ... Withington, S. (2014). PRISM (Polarized Radiation Imaging and Spectroscopy Mission): An extended white paper. Journal of Cosmology and Astroparticle Physics, 2014(2), [006]. https://doi.org/10.1088/1475-7516/2014/02/006