Skip to main navigation
Skip to search
Skip to main content
Princeton University Home
Help & FAQ
Home
Profiles
Research units
Facilities
Projects
Research output
Press/Media
Search by expertise, name or affiliation
Principal component analysis on non-gaussian dependent data
Fang Han, Han Liu
Operations Research & Financial Engineering
Research output
:
Contribution to conference
›
Paper
›
peer-review
9
Scopus citations
Overview
Fingerprint
Fingerprint
Dive into the research topics of 'Principal component analysis on non-gaussian dependent data'. Together they form a unique fingerprint.
Sort by
Weight
Alphabetically
Keyphrases
Principal Coordinate Analysis (PCoA)
100%
Non-Gaussian
100%
Dependent Data
100%
Copula
100%
Weak Dependence
33%
Semi-parametric
33%
Parameter Estimation
33%
Semiparametric Model
33%
High-dimensional Setting
33%
Support Recovery
33%
Theoretical Performance
33%
Parametric Rate
33%
Recovery Estimation
33%
Generalization Bounds
33%
Monotone Transformations
33%
Multivariate Gaussian
33%
Multivariate Statistical Techniques
33%
Non-IID
33%
Degree of Dependence
33%
Support Parameters
33%
Mathematics
Principal Component Analysis
100%
Gaussian Distribution
100%
Dependent Data
100%
Copula
100%
Sufficient Condition
33%
Parametric
33%
Parameter Estimation
33%
Statistical Method
33%
Economics, Econometrics and Finance
Principal Components
100%
Statistical Method
50%