@inproceedings{c2cbd2592f484ec68bbcaacad40da240,
title = "Preposition sense disambiguation and representation",
abstract = "Prepositions are highly polysemous, and their variegated senses encode significant semantic information. In this paper we match each preposition's left- and right context, and their interplay to the geometry of the word vectors to the left and right of the preposition. Extracting these features from a large corpus and using them with machine learning models makes for an efficient preposition sense disambiguation (PSD) algorithm, which is comparable to and better than state-of-the-art on two benchmark datasets. Our reliance on no linguistic tool allows us to scale the PSD algorithm to a large corpus and learn sense-specific preposition representations. The crucial abstraction of preposition senses as word representations permits their use in downstream applications-phrasal verb paraphrasing and preposition selection-with new state-ofthe-art results.",
author = "Hongyu Gong and Jiaqi Mu and Suma Bhat and Pramod Viswanath",
note = "Publisher Copyright: {\textcopyright} 2018 Association for Computational Linguistics; 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018 ; Conference date: 31-10-2018 Through 04-11-2018",
year = "2018",
language = "English (US)",
series = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018",
publisher = "Association for Computational Linguistics",
pages = "1510--1521",
editor = "Ellen Riloff and David Chiang and Julia Hockenmaier and Jun'ichi Tsujii",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018",
}