Abstract
The final hardware modifications for tritium operation have been completed for the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. 21, 1324 (1992)]. These activities include preparation of the tritium gas handling system, installation of additional neutron shielding, conversion of the toroidal field coil cooling system from water to a Fluorinert™ system, modification of the vacuum system to handle tritium, preparation, and testing of the neutral beam system for tritium operation and a final deuterium-deuterium (D-D) run to simulate expected deuterium-tritium (D-T) operation. Testing of the tritium system with low concentration tritium has successfully begun. Simulation of trace and high power D-T experiments using D-D have been performed. The physics objectives of D-T operation are production of ≈ 10 MW of fusion power, evaluation of confinement, and heating in deuteriumtritium plasmas, evaluation of α-particle heating of electrons, and collective effects driven by alpha particles and testing of diagnostics for confined a particles. Experimental results and theoretical modeling in support of the D-T experiments are reviewed.
Original language | English (US) |
---|---|
Pages (from-to) | 1560-1567 |
Number of pages | 8 |
Journal | Physics of Plasmas |
Volume | 1 |
Issue number | 5 |
DOIs | |
State | Published - 1994 |
All Science Journal Classification (ASJC) codes
- Condensed Matter Physics