Abstract
Using periodic slab density functional theory, we investigate CO adsorption, diffusion, and dissociation energetics on a monolayer of Al covering Fe(100) [Al/Fe(100)]. We predict a weakly chemisorbed state of CO to exist on Al/Fe(100), with CO adsorbing on the 4-fold hollow site in a very tilted fashion. This state is predicted to have an extremely low CO stretching frequency of only 883 cm-1, indicating a dramatically weakened CO bond relative to gaseous CO, even though the molecule is predicted to bind to Al/Fe(100) quite weakly. We predict that dissociation of CO starting from this weakly adsorbed state has a barrier of only ∼0.35 eV, which is ∼0.70 eV lower than that on Fe(100). To understand how the underlying substrate changes the electronic properties of the supported Al monolayer, we compare CO adsorption on Al/Fe(100) to its adsorption on analogous pure Al(100) surfaces. This highly activated yet weakly bound state of CO on Al/Fe(100) suggests that Al/Fe(100) could be an effective low-temperature bimetallic catalyst in reducing environments.
Original language | English (US) |
---|---|
Pages (from-to) | 22213-22219 |
Number of pages | 7 |
Journal | Journal of Physical Chemistry B |
Volume | 110 |
Issue number | 44 |
DOIs | |
State | Published - Nov 9 2006 |
All Science Journal Classification (ASJC) codes
- Materials Chemistry
- Surfaces, Coatings and Films
- Physical and Theoretical Chemistry