TY - GEN
T1 - Predicting Learner Interactions in Social Learning Networks
AU - Yang, Tsung Yen
AU - Brinton, Christopher G.
AU - Joe-Wong, Carlee
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018/10/8
Y1 - 2018/10/8
N2 - We consider the problem of predicting link formation in Social Learning Networks (SLN), a type of social network that forms when people learn from one another through structured interactions. While link prediction has been studied for general types of social networks, the evolution of SLNs over their lifetimes coupled with their dependence on which topics are being discussed presents new challenges for this type of network. To address these challenges, we develop a time-series prediction methodology that uses a recurrent neural network architecture to pass network state between time periods, and that models over three types of SLN features updated in each period: neighborhood-based (e.g., resource allocation), path-based (e.g., shortest path), and post-based (e.g., topic similarity). Through evaluation on four real-world datasets from Massive Open Online Course (MOOC) discussion forums, we find that our method obtains substantial improvements over a Bayesian model and an unsupervised baseline, with AUCs typically above 0.75 and reaching 0.97 depending on the dataset. Our feature importance analysis shows that while neighborhood-based features contribute the most to the results, post-based and path-based features add additional information that significantly improve the predictions. We also find that several input features have opposite directions of correlation between link formation and post quality, suggesting that response time and quality are two competing objectives to be accounted for in SLN link recommendation systems.
AB - We consider the problem of predicting link formation in Social Learning Networks (SLN), a type of social network that forms when people learn from one another through structured interactions. While link prediction has been studied for general types of social networks, the evolution of SLNs over their lifetimes coupled with their dependence on which topics are being discussed presents new challenges for this type of network. To address these challenges, we develop a time-series prediction methodology that uses a recurrent neural network architecture to pass network state between time periods, and that models over three types of SLN features updated in each period: neighborhood-based (e.g., resource allocation), path-based (e.g., shortest path), and post-based (e.g., topic similarity). Through evaluation on four real-world datasets from Massive Open Online Course (MOOC) discussion forums, we find that our method obtains substantial improvements over a Bayesian model and an unsupervised baseline, with AUCs typically above 0.75 and reaching 0.97 depending on the dataset. Our feature importance analysis shows that while neighborhood-based features contribute the most to the results, post-based and path-based features add additional information that significantly improve the predictions. We also find that several input features have opposite directions of correlation between link formation and post quality, suggesting that response time and quality are two competing objectives to be accounted for in SLN link recommendation systems.
UR - http://www.scopus.com/inward/record.url?scp=85056148892&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85056148892&partnerID=8YFLogxK
U2 - 10.1109/INFOCOM.2018.8485927
DO - 10.1109/INFOCOM.2018.8485927
M3 - Conference contribution
AN - SCOPUS:85056148892
T3 - Proceedings - IEEE INFOCOM
SP - 1322
EP - 1330
BT - INFOCOM 2018 - IEEE Conference on Computer Communications
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2018 IEEE Conference on Computer Communications, INFOCOM 2018
Y2 - 15 April 2018 through 19 April 2018
ER -