@inproceedings{5dc8a88d3b1b4e7cb959c20e832167f1,
title = "Practical Contextual Bandits with Regression Oracles",
abstract = "A major challenge in contextual bandits is to design general-purpose algorithms that are both practically useful and theoretically well-founded. We present a new technique that has the empiri-cal and computational advantages of realizability- based approaches combined with the flexibility of agnostic methods. Our algorithms leverage the availability of a regression oracle for the value- function class, a more realistic and reasonable oracle than the classification oracles over policies typically assumed by agnostic methods. Our approach generalizes both UCB and LinUCB to far more expressive possible model classes and achieves low regret under certain distributional as-sumptions. In an extensive empirical evaluation, we find that our approach typically matches or outperforms both realizability-based and agnostic baselines.",
author = "Foster, {Dylan J.} and Alekh Agarwal and Miroslav Dudik and Luo Haipeng and Schapire, {Robert E.}",
note = "Publisher Copyright: {\textcopyright} 2018 35th International Conference on Machine Learning, ICML 2018. All rights reserved.; 35th International Conference on Machine Learning, ICML 2018 ; Conference date: 10-07-2018 Through 15-07-2018",
year = "2018",
language = "English (US)",
series = "35th International Conference on Machine Learning, ICML 2018",
publisher = "International Machine Learning Society (IMLS)",
pages = "2482--2517",
editor = "Jennifer Dy and Andreas Krause",
booktitle = "35th International Conference on Machine Learning, ICML 2018",
}