TY - GEN
T1 - Practical Bayesian optimization of machine learning algorithms
AU - Snoek, Jasper
AU - Larochelle, Hugo
AU - Adams, Ryan P.
N1 - Copyright:
Copyright 2013 Elsevier B.V., All rights reserved.
PY - 2012
Y1 - 2012
N2 - The use of machine learning algorithms frequently involves careful tuning of learning parameters and model hyperparameters. Unfortunately, this tuning is often a "black art" requiring expert experience, rules of thumb, or sometimes bruteforce search. There is therefore great appeal for automatic approaches that can optimize the performance of any given learning algorithm to the problem at hand. In this work, we consider this problem through the framework of Bayesian optimization, in which a learning algorithm's generalization performance is modeled as a sample from a Gaussian process (GP). We show that certain choices for the nature of the GP, such as the type of kernel and the treatment of its hyperparameters, can play a crucial role in obtaining a good optimizer that can achieve expertlevel performance. We describe new algorithms that take into account the variable cost (duration) of learning algorithm experiments and that can leverage the presence of multiple cores for parallel experimentation. We show that these proposed algorithms improve on previous automatic procedures and can reach or surpass human expert-level optimization for many algorithms including latent Dirichlet allocation, structured SVMs and convolutional neural networks.
AB - The use of machine learning algorithms frequently involves careful tuning of learning parameters and model hyperparameters. Unfortunately, this tuning is often a "black art" requiring expert experience, rules of thumb, or sometimes bruteforce search. There is therefore great appeal for automatic approaches that can optimize the performance of any given learning algorithm to the problem at hand. In this work, we consider this problem through the framework of Bayesian optimization, in which a learning algorithm's generalization performance is modeled as a sample from a Gaussian process (GP). We show that certain choices for the nature of the GP, such as the type of kernel and the treatment of its hyperparameters, can play a crucial role in obtaining a good optimizer that can achieve expertlevel performance. We describe new algorithms that take into account the variable cost (duration) of learning algorithm experiments and that can leverage the presence of multiple cores for parallel experimentation. We show that these proposed algorithms improve on previous automatic procedures and can reach or surpass human expert-level optimization for many algorithms including latent Dirichlet allocation, structured SVMs and convolutional neural networks.
UR - http://www.scopus.com/inward/record.url?scp=84869201485&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84869201485&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84869201485
SN - 9781627480031
T3 - Advances in Neural Information Processing Systems
SP - 2951
EP - 2959
BT - Advances in Neural Information Processing Systems 25
T2 - 26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012
Y2 - 3 December 2012 through 6 December 2012
ER -