PQM-1 controls hypoxic survival via regulation of lipid metabolism

Thomas Heimbucher, Julian Hog, Piyush Gupta, Coleen T. Murphy

Research output: Contribution to journalArticlepeer-review

Abstract

Animals have evolved responses to low oxygen conditions to ensure their survival. Here, we have identified the C. elegans zinc finger transcription factor PQM-1 as a regulator of the hypoxic stress response. PQM-1 is required for the longevity of insulin signaling mutants, but surprisingly, loss of PQM-1 increases survival under hypoxic conditions. PQM-1 functions as a metabolic regulator by controlling oxygen consumption rates, suppressing hypoxic glycogen levels, and inhibiting the expression of the sorbitol dehydrogenase-1 SODH-1, a crucial sugar metabolism enzyme. PQM-1 promotes hypoxic fat metabolism by maintaining the expression of the stearoyl-CoA desaturase FAT-7, an oxygen consuming, rate-limiting enzyme in fatty acid biosynthesis. PQM-1 activity positively regulates fat transport to developing oocytes through vitellogenins under hypoxic conditions, thereby increasing survival rates of arrested progeny during hypoxia. Thus, while pqm-1 mutants increase survival of mothers, ultimately this loss is detrimental to progeny survival. Our data support a model in which PQM-1 controls a trade-off between lipid metabolic activity in the mother and her progeny to promote the survival of the species under hypoxic conditions.

Original languageEnglish (US)
Article number4627
JournalNature communications
Volume11
Issue number1
DOIs
StatePublished - Dec 1 2020

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'PQM-1 controls hypoxic survival via regulation of lipid metabolism'. Together they form a unique fingerprint.

Cite this