TY - GEN
T1 - Post-zeroizing obfuscation
T2 - 35th Annual International Conference on Theory and Applications of Cryptographic Techniques, EUROCRYPT 2016
AU - Badrinarayanan, Saikrishna
AU - Miles, Eric
AU - Sahai, Amit
AU - Zhandry, Mark
N1 - Publisher Copyright:
© International Association for Cryptologic Research 2016.
PY - 2016
Y1 - 2016
N2 - Recent devastating attacks by Cheon et al. [Eurocrypt’15] and others have highlighted significant gaps in our intuition about security in candidate multilinear map schemes, and in candidate obfuscators that use them. The new attacks, and some that were previously known, are typically called “zeroizing” attacks because they all crucially rely on the ability of the adversary to create encodings of 0. In this work, we initiate the study of post-zeroizing obfuscation, and we obtain a key new mathematical tool to analyze security in a postzeroizing world. Our new mathematical tool allows for analyzing polynomials constructed by the adversary when given encodings of randomized matrices arising from a general matrix branching program. This technique shows that the types of encodings an adversary can create are much more restricted than was previously known, and is a crucial step toward achieving post-zeroizing security. We also believe the technique is of independent interest, as it yields efficiency improvements for existing schemes –efficiency improvements that have already found application in other settings. Finally, we show how to apply our new mathematical tool to the special case of evasive functions. We show that our obfuscator survives all known attacks on the underlying multilinear maps, by proving that no top-level encodings of 0 can be created by a generic-model adversary. Previous obfuscators (for both evasive and general functions) were either analyzed in a less-conservative “pre-zeroizing” model that does not capture recent attacks, or were proved secure relative to assumptions that no longer have any plausible instantiation due to zeroizing attacks.
AB - Recent devastating attacks by Cheon et al. [Eurocrypt’15] and others have highlighted significant gaps in our intuition about security in candidate multilinear map schemes, and in candidate obfuscators that use them. The new attacks, and some that were previously known, are typically called “zeroizing” attacks because they all crucially rely on the ability of the adversary to create encodings of 0. In this work, we initiate the study of post-zeroizing obfuscation, and we obtain a key new mathematical tool to analyze security in a postzeroizing world. Our new mathematical tool allows for analyzing polynomials constructed by the adversary when given encodings of randomized matrices arising from a general matrix branching program. This technique shows that the types of encodings an adversary can create are much more restricted than was previously known, and is a crucial step toward achieving post-zeroizing security. We also believe the technique is of independent interest, as it yields efficiency improvements for existing schemes –efficiency improvements that have already found application in other settings. Finally, we show how to apply our new mathematical tool to the special case of evasive functions. We show that our obfuscator survives all known attacks on the underlying multilinear maps, by proving that no top-level encodings of 0 can be created by a generic-model adversary. Previous obfuscators (for both evasive and general functions) were either analyzed in a less-conservative “pre-zeroizing” model that does not capture recent attacks, or were proved secure relative to assumptions that no longer have any plausible instantiation due to zeroizing attacks.
UR - http://www.scopus.com/inward/record.url?scp=84964957742&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84964957742&partnerID=8YFLogxK
U2 - 10.1007/978-3-662-49896-5_27
DO - 10.1007/978-3-662-49896-5_27
M3 - Conference contribution
AN - SCOPUS:84964957742
SN - 9783662498958
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 764
EP - 791
BT - Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Proceedings
A2 - Fischlin, Marc
A2 - Coron, Jean-Sebastien
PB - Springer Verlag
Y2 - 8 May 2016 through 12 May 2016
ER -