TY - JOUR
T1 - Porous lanthanide metal–organic frameworks with metallic conductivity
AU - Skorupskii, Grigorii
AU - Le, Khoa N.
AU - Cordova, Dmitri Leo Mesoza
AU - Yang, Luming
AU - Chen, Tianyang
AU - Hendon, Christopher H.
AU - Arguilla, Maxx Q.
AU - Dincă, Mircea
N1 - Publisher Copyright:
Copyright © 2022 the Author(s). Published by PNAS.
PY - 2022/8/23
Y1 - 2022/8/23
N2 - Metallic charge transport and porosity appear almost mutually exclusive. Whereas metals demand large numbers of free carriers and must have minimal impurities and lattice vibrations to avoid charge scattering, the voids in porous materials limit the carrier concentration, provide ample space for impurities, and create more charge-scattering vibrations due to the size and flexibility of the lattice. No microporous material has been conclusively shown to behave as a metal. Here, we demonstrate that single crystals of the porous metal–organic framework Ln1.5(2,3,6,7,10,11-hexaoxytriphenylene) (Ln = La, Nd) are metallic. The materials display the highest room-temperature conductivities of all porous materials, reaching values above 1,000 S/cm. Single crystals of the compounds additionally show clear temperature-deactivated charge transport, a hallmark of a metallic material. Lastly, a structural transition consistent with charge density wave ordering, present only in metals and rare in any materials, provides additional conclusive proof of the metallic nature of the materials. Our results provide an example of a metal with porosity intrinsic to its structure. We anticipate that the combination of porosity and chemical tunability that these materials possess will provide a unique handle toward controlling the unconventional states that lie within them, such as charge density waves that we observed, or perhaps superconductivity.
AB - Metallic charge transport and porosity appear almost mutually exclusive. Whereas metals demand large numbers of free carriers and must have minimal impurities and lattice vibrations to avoid charge scattering, the voids in porous materials limit the carrier concentration, provide ample space for impurities, and create more charge-scattering vibrations due to the size and flexibility of the lattice. No microporous material has been conclusively shown to behave as a metal. Here, we demonstrate that single crystals of the porous metal–organic framework Ln1.5(2,3,6,7,10,11-hexaoxytriphenylene) (Ln = La, Nd) are metallic. The materials display the highest room-temperature conductivities of all porous materials, reaching values above 1,000 S/cm. Single crystals of the compounds additionally show clear temperature-deactivated charge transport, a hallmark of a metallic material. Lastly, a structural transition consistent with charge density wave ordering, present only in metals and rare in any materials, provides additional conclusive proof of the metallic nature of the materials. Our results provide an example of a metal with porosity intrinsic to its structure. We anticipate that the combination of porosity and chemical tunability that these materials possess will provide a unique handle toward controlling the unconventional states that lie within them, such as charge density waves that we observed, or perhaps superconductivity.
KW - charge density wave
KW - electrical transport
KW - low-dimensional materials
KW - Metal–organic frameworks
UR - http://www.scopus.com/inward/record.url?scp=85136020025&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85136020025&partnerID=8YFLogxK
U2 - 10.1073/pnas.2205127119
DO - 10.1073/pnas.2205127119
M3 - Article
C2 - 35969747
AN - SCOPUS:85136020025
SN - 0027-8424
VL - 119
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 34
M1 - e2205127119
ER -