Polynomial complexity of polar codes for non-binary alphabets, key agreement and Slepian-Wolf coding

Jingbo Liu, Emmanuel Abbe

Research output: Contribution to conferencePaperpeer-review

1 Scopus citations

Abstract

We consider polar codes for memoryless sources with side information and show that the blocklength, construction, encoding and decoding complexities are bounded by a polynomial of the reciprocal of the gap between the compression rate and the conditional entropy. This extends the recent results of Guruswami and Xia to a slightly more general setting, which in turn can be applied to (1) sources with non-binary alphabets, (2) key generation for discrete and Gaussian sources, and (3) Slepian-Wolf coding and multiple accessing. In each of these cases, the complexity scaling with respect to the number of users is also controlled. In particular, we construct coding schemes for these multi-user information theory problems which achieve optimal rates with an overall polynomial complexity.

Original languageEnglish (US)
DOIs
StatePublished - 2014
Event2014 48th Annual Conference on Information Sciences and Systems, CISS 2014 - Princeton, NJ, United States
Duration: Mar 19 2014Mar 21 2014

Other

Other2014 48th Annual Conference on Information Sciences and Systems, CISS 2014
CountryUnited States
CityPrinceton, NJ
Period3/19/143/21/14

All Science Journal Classification (ASJC) codes

  • Information Systems

Fingerprint Dive into the research topics of 'Polynomial complexity of polar codes for non-binary alphabets, key agreement and Slepian-Wolf coding'. Together they form a unique fingerprint.

Cite this