TY - JOUR
T1 - Polynomial averages and pointwise ergodic theorems on nilpotent groups
AU - Ionescu, Alexandru D.
AU - Magyar, Ákos
AU - Mirek, Mariusz
AU - Szarek, Tomasz Z.
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2023/3
Y1 - 2023/3
N2 - We establish pointwise almost everywhere convergence for ergodic averages along polynomial sequences in nilpotent groups of step two of measure-preserving transformations on σ-finite measure spaces. We also establish corresponding maximal inequalities on Lp for 1 < p≤ ∞ and ρ-variational inequalities on L2 for 2 < ρ< ∞. This gives an affirmative answer to the Furstenberg–Bergelson–Leibman conjecture in the linear case for all polynomial ergodic averages in discrete nilpotent groups of step two. Our proof is based on almost-orthogonality techniques that go far beyond Fourier transform tools, which are not available in the non-commutative, nilpotent setting. In particular, we develop what we call a nilpotent circle method that allows us to adapt some of the ideas of the classical circle method to the setting of nilpotent groups.
AB - We establish pointwise almost everywhere convergence for ergodic averages along polynomial sequences in nilpotent groups of step two of measure-preserving transformations on σ-finite measure spaces. We also establish corresponding maximal inequalities on Lp for 1 < p≤ ∞ and ρ-variational inequalities on L2 for 2 < ρ< ∞. This gives an affirmative answer to the Furstenberg–Bergelson–Leibman conjecture in the linear case for all polynomial ergodic averages in discrete nilpotent groups of step two. Our proof is based on almost-orthogonality techniques that go far beyond Fourier transform tools, which are not available in the non-commutative, nilpotent setting. In particular, we develop what we call a nilpotent circle method that allows us to adapt some of the ideas of the classical circle method to the setting of nilpotent groups.
UR - http://www.scopus.com/inward/record.url?scp=85138960219&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85138960219&partnerID=8YFLogxK
U2 - 10.1007/s00222-022-01159-0
DO - 10.1007/s00222-022-01159-0
M3 - Article
AN - SCOPUS:85138960219
SN - 0020-9910
VL - 231
SP - 1023
EP - 1140
JO - Inventiones Mathematicae
JF - Inventiones Mathematicae
IS - 3
ER -