Polarized Anisotropic Synchrotron Emission and Absorption and Its Application to Black Hole Imaging

Alisa Galishnikova, Alexander Philippov, Eliot Quataert

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


Low-collisionality plasma in a magnetic field generically develops anisotropy in its distribution function with respect to the magnetic field direction. Motivated by the application to radiation from accretion flows and jets, we explore the effect of temperature anisotropy on synchrotron emission. We derive analytically and provide numerical fits for the polarized synchrotron emission and absorption coefficients for a relativistic bi-Maxwellian plasma (we do not consider Faraday conversion/rotation). Temperature anisotropy can significantly change how the synchrotron emission and absorption coefficients depend on observing angle with respect to the magnetic field. The emitted linear polarization fraction does not depend strongly on anisotropy, while the emitted circular polarization does. We apply our results to black hole imaging of Sgr A* and M87* by ray tracing a GRMHD simulation and assuming that the plasma temperature anisotropy is set by the thresholds of kinetic-scale anisotropy-driven instabilities. We find that the azimuthal asymmetry of the 230 GHz images can change by up to a factor of 3, accentuating (T > T ) or counteracting (T < T ) the image asymmetry produced by Doppler beaming. This can change the physical inferences from observations relative to models with an isotropic distribution function, e.g., by allowing for larger inclination between the line of sight and spin direction in Sgr A*. The observed image diameter and the size of the black hole shadow can also vary significantly due to plasma temperature anisotropy. We describe how the anisotropy of the plasma can affect future multifrequency and photon ring observations. We also calculate kinetic anisotropy-driven instabilities (mirror, whistler, and firehose) for relativistically hot plasmas.

Original languageEnglish (US)
Article number103
JournalAstrophysical Journal
Issue number2
StatePublished - Nov 1 2023

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'Polarized Anisotropic Synchrotron Emission and Absorption and Its Application to Black Hole Imaging'. Together they form a unique fingerprint.

Cite this