Abstract
Strong light-matter coupling is emerging as a fascinating way to tune optical properties and modify the photophysics of molecular systems. In this work, we studied a molecular chromophore under strong coupling with the optical mode of a Fabry-Perot cavity resonant to the first electronic absorption band. Using femtosecond pump-probe spectroscopy, we investigated the transient response of the cavity-coupled molecules upon photoexcitation resonant to the upper and lower polaritons. We identified an excited state absorption from upper and lower polaritons to a state at the energy of the second cavity mode. Quantum mechanical calculations of the many-molecule energy structure of cavity polaritons suggest assignment of this state as a two-particle polaritonic state with optically allowed transitions from the upper and lower polaritons. We provide new physical insight into the role of two-particle polaritonic states in explaining transient signatures in hybrid light-matter coupling systems consistent with analogous many-body systems.
Original language | English (US) |
---|---|
Pages (from-to) | 2667-2674 |
Number of pages | 8 |
Journal | Journal of Physical Chemistry Letters |
Volume | 11 |
Issue number | 7 |
DOIs | |
State | Published - Apr 2 2020 |
All Science Journal Classification (ASJC) codes
- General Materials Science
- Physical and Theoretical Chemistry