"plug-and-Go" strategy to manipulate streptavidin valencies

Xun Sun, Daniel Montiel, Hao Li, Haw Yang

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

The streptavidin-biotin set is one of the most widely utilized conjugation pairs in biotechnological applications. The tetravalent nature of streptavidin and its homologues, however, tends to result in such undesirable complications as cross-linking or ill-defined stoichiometry. Here, we describe a mutagenesis-free strategy to manipulate the valencies of wild-type streptavidin that only requires commercially available reagents. The basic idea is simple: one obtains the desired streptavidin valency by blocking off unwanted binding sites using ancillary biotin ("plug"); this way, the extraordinary fM-biotin-binding affinity is fully retained for the remaining sites in streptavidin. In the present implementation, the ancillary biotin is attached to an auxiliary separation handle, negatively charged DNA or His-tagged protein, via a photochemically or enzymatically cleavable linker. Mixing streptavidin with the ancillary biotin construct produces a distribution of streptavidin valencies. The subsequent chromatographic separation readily isolates the construct of desired streptavidin valency, and the auxiliary handles are easily removed afterward ("go"). We demonstrate how this "plug-and- go" strategy allows a precise control for the compositions of streptavidin-biotin conjugates at the single-molecule level. This low-entry-barrier protocol could further expand the application scope of the streptavidin technology.

Original languageEnglish (US)
Pages (from-to)1375-1380
Number of pages6
JournalBioconjugate Chemistry
Volume25
Issue number8
DOIs
StatePublished - Aug 20 2014

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Biotechnology
  • Biomedical Engineering
  • Pharmacology
  • Pharmaceutical Science
  • Organic Chemistry

Fingerprint

Dive into the research topics of '"plug-and-Go" strategy to manipulate streptavidin valencies'. Together they form a unique fingerprint.

Cite this