Plasma-assisted deflagration to detonation transition in a microchannel with fast-frame imaging and hybrid fs/ps coherent anti-Stokes Raman scattering measurements

Madeline Vorenkamp, Scott A. Steinmetz, Timothy Y. Chen, Xingqian Mao, Andrey Starikovskiy, Christopher Kliewer, Yiguang Ju

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

This study examines kinetic enhancement by nanosecond dielectric barrier discharge (ns-DBD) plasma on fuel-lean, Φ = 0.7, dimethyl ether (DME), oxygen (O2), and argon (Ar) premixture during deflagration to detonation transition (DDT) experiments in a microchannel. Nonequilibrium plasma produces active species and radicals as well as fast and slow heating of a mixture to promote ignition due to energetic electrons, ions, and electronic and vibrational excitations. Experiments are conducted to examine the influence of the plasma discharge on the premixture and on the resultant deflagration to detonation transition (DDT) onset time and distance through the use of high-speed imaging and one-dimensional, two-beam, femtosecond/picosecond, coherent anti-Stokes Raman scattering (CARS). A high-speed camera is used to trace the time histories of flame front position and velocity and to identify the dynamics and onset of DDT. The results show that plasma discharge can nonlinearly affect the onset time and distance of DDT. It is shown that a small number of plasma discharge pulses prior to ignition result in reduced DDT onset time and distance by 60% and 40%, respectively, when compared to the results without pre-excitation by ns discharges. The results also show that an increase of number of the plasma discharge pulses results in an extended DDT onset time and distance of 224% and 94%, respectively. Time history of the deflagration wave speed of DME and the analysis of ignition timescale under the choking condition of the burned gas of the deflagration wave suggest low temperature ignition may play a role for DME near the isobaric choking condition of the burned gas and the DDT. Plasma-induced low temperature oxidation of the reactive mixture is assessed via the CO2 to O2 ratio as measured through fs/ps CARS during the gas excitation in discharges. CARS measurements also confirm negligible vibrational and rotational heating of the gas by discharge. The present experiments demonstrate the ability of nonequilibrium plasma to alter the chemistry of DME/O2/Ar premixtures in order to control DDT for applications in advanced propulsion engines.

Original languageEnglish (US)
Pages (from-to)5561-5569
Number of pages9
JournalProceedings of the Combustion Institute
Volume39
Issue number4
DOIs
StatePublished - Jan 2023

All Science Journal Classification (ASJC) codes

  • General Chemical Engineering
  • Mechanical Engineering
  • Physical and Theoretical Chemistry

Keywords

  • Coherent anti-Stokes Raman scattering
  • Deflagration to detonation transition
  • Dimethyl ether
  • Low temperature chemistry
  • Nonequilibrium plasma

Fingerprint

Dive into the research topics of 'Plasma-assisted deflagration to detonation transition in a microchannel with fast-frame imaging and hybrid fs/ps coherent anti-Stokes Raman scattering measurements'. Together they form a unique fingerprint.

Cite this