TY - GEN
T1 - Planning with Learned Object Importance in Large Problem Instances using Graph Neural Networks
AU - Silver, Tom
AU - Chitnis, Rohan
AU - Curtis, Aidan
AU - Tenenbaum, Joshua
AU - Lozano-Pérez, Tomás
AU - Kaelbling, Leslie Pack
N1 - Publisher Copyright:
© 2021, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2021
Y1 - 2021
N2 - Real-world planning problems often involve hundreds or even thousands of objects, straining the limits of modern planners. In this work, we address this challenge by learning to predict a small set of objects that, taken together, would be sufficient for finding a plan. We propose a graph neural network architecture for predicting object importance in a single inference pass, thus incurring little overhead while greatly reducing the number of objects that must be considered by the planner. Our approach treats the planner and transition model as black boxes, and can be used with any off-the-shelf planner. Empirically, across classical planning, probabilistic planning, and robotic task and motion planning, we find that our method results in planning that is significantly faster than several baselines, including other partial grounding strategies and lifted planners. We conclude that learning to predict a sufficient set of objects for a planning problem is a simple, powerful, and general mechanism for planning in large instances. Video: https://youtu.be/FWsVJc2fvCE Code: https://git.io/JIsqX.
AB - Real-world planning problems often involve hundreds or even thousands of objects, straining the limits of modern planners. In this work, we address this challenge by learning to predict a small set of objects that, taken together, would be sufficient for finding a plan. We propose a graph neural network architecture for predicting object importance in a single inference pass, thus incurring little overhead while greatly reducing the number of objects that must be considered by the planner. Our approach treats the planner and transition model as black boxes, and can be used with any off-the-shelf planner. Empirically, across classical planning, probabilistic planning, and robotic task and motion planning, we find that our method results in planning that is significantly faster than several baselines, including other partial grounding strategies and lifted planners. We conclude that learning to predict a sufficient set of objects for a planning problem is a simple, powerful, and general mechanism for planning in large instances. Video: https://youtu.be/FWsVJc2fvCE Code: https://git.io/JIsqX.
UR - https://www.scopus.com/pages/publications/85108292900
UR - https://www.scopus.com/inward/citedby.url?scp=85108292900&partnerID=8YFLogxK
U2 - 10.1609/aaai.v35i13.17421
DO - 10.1609/aaai.v35i13.17421
M3 - Conference contribution
AN - SCOPUS:85108292900
T3 - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
SP - 11962
EP - 11971
BT - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
PB - Association for the Advancement of Artificial Intelligence
T2 - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
Y2 - 2 February 2021 through 9 February 2021
ER -