Abstract
This paper presents an overview of the polarized sky as seen by Planck HFI at 353 GHz, which is the most sensitive Planck channel for dust polarization. We construct and analyse maps of dust polarization fraction and polarization angle at 1° resolution, taking into account noise bias and possible systematic effects. The sensitivity of the Planck HFI polarization measurements allows for the first time a mapping of Galactic dust polarized emission on large scales, including low column density regions. We find that the maximum observed dust polarization fraction is high (pmax = 19.8%), in particular in some regions of moderate hydrogen column density (NH < 2 × 1021 cm-2). The polarization fraction displays a large scatter at NH below a few 1021 cm-2. There is a general decrease in the dust polarization fraction with increasing column density above NH ∼ 1 × 1021 cm-2 and in particular a sharp drop above NH ∼ 1.5 × 1022 cm-2. We characterize the spatial structure of the polarization angle using the angle dispersion function. We find that the polarization angle is ordered over extended areas of several square degrees, separated by filamentary structures of high angle dispersion function. These appear as interfaces where the sky projection of the magnetic field changes abruptly without variations in the column density. The polarization fraction is found to be anti-correlated with the dispersion of polarization angles. These results suggest that, at the resolution of 1°, depolarization is due mainly to fluctuations in the magnetic field orientation along the line of sight, rather than to the loss of grain alignment in shielded regions. We also compare the polarization of thermal dust emission with that of synchrotron measured with Planck, low-frequency radio data, and Faraday rotation measurements toward extragalactic sources. These components bear resemblance along the Galactic plane and in some regions such as the Fan and North Polar Spur regions. The poor match observed in other regions shows, however, that dust, cosmic-ray electrons, and thermal electrons generally sample different parts of the line of sight.
Original language | English (US) |
---|---|
Article number | A104 |
Journal | Astronomy and Astrophysics |
Volume | 576 |
DOIs | |
State | Published - Apr 1 2015 |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science
Keywords
- Dust, extinction
- ISM: clouds
- ISM: general
- ISM: magnetic fields
- Submillimeter: ISM
Access to Document
Fingerprint Dive into the research topics of 'Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust'. Together they form a unique fingerprint.
Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust. / Ade, P. A.R.; Aghanim, N.; Alina, D.; Alves, M. I.R.; Armitage-Caplan, C.; Arnaud, M.; Arzoumanian, D.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J. P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Butler, R. C.; Cardoso, J. F.; Catalano, A.; Chamballu, A.; Chary, R. R.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; De Bernardis, P.; De Gouveia Dal Pino, E. M.; De Rosa, A.; De Zotti, G.; Delabrouille, J.; Désert, F. X.; Dickinson, C.; Diego, J. M.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J. M.; Lasenby, A.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Magalhães, A. M.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M. A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pietrobon, D.; Plaszczynski, S.; Poidevin, F.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J. L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton, D.; Suur-Uski, A. S.; Sygnet, J. F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Zacchei, A.; Zonca, A.
In: Astronomy and Astrophysics, Vol. 576, A104, 01.04.2015.Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust
AU - Ade, P. A.R.
AU - Aghanim, N.
AU - Alina, D.
AU - Alves, M. I.R.
AU - Armitage-Caplan, C.
AU - Arnaud, M.
AU - Arzoumanian, D.
AU - Ashdown, M.
AU - Atrio-Barandela, F.
AU - Aumont, J.
AU - Baccigalupi, C.
AU - Banday, A. J.
AU - Barreiro, R. B.
AU - Battaner, E.
AU - Benabed, K.
AU - Benoit-Lévy, A.
AU - Bernard, J. P.
AU - Bersanelli, M.
AU - Bielewicz, P.
AU - Bock, J. J.
AU - Bond, J. R.
AU - Borrill, J.
AU - Bouchet, F. R.
AU - Boulanger, F.
AU - Bracco, A.
AU - Burigana, C.
AU - Butler, R. C.
AU - Cardoso, J. F.
AU - Catalano, A.
AU - Chamballu, A.
AU - Chary, R. R.
AU - Chiang, H. C.
AU - Christensen, P. R.
AU - Colombi, S.
AU - Colombo, L. P.L.
AU - Combet, C.
AU - Couchot, F.
AU - Coulais, A.
AU - Crill, B. P.
AU - Curto, A.
AU - Cuttaia, F.
AU - Danese, L.
AU - Davies, R. D.
AU - Davis, R. J.
AU - De Bernardis, P.
AU - De Gouveia Dal Pino, E. M.
AU - De Rosa, A.
AU - De Zotti, G.
AU - Delabrouille, J.
AU - Désert, F. X.
AU - Dickinson, C.
AU - Diego, J. M.
AU - Donzelli, S.
AU - Doré, O.
AU - Douspis, M.
AU - Dunkley, J.
AU - Dupac, X.
AU - Efstathiou, G.
AU - Enßlin, T. A.
AU - Eriksen, H. K.
AU - Falgarone, E.
AU - Ferrière, K.
AU - Finelli, F.
AU - Forni, O.
AU - Frailis, M.
AU - Fraisse, A. A.
AU - Franceschi, E.
AU - Galeotta, S.
AU - Ganga, K.
AU - Ghosh, T.
AU - Giard, M.
AU - Giraud-Héraud, Y.
AU - González-Nuevo, J.
AU - Górski, K. M.
AU - Gregorio, A.
AU - Gruppuso, A.
AU - Guillet, V.
AU - Hansen, F. K.
AU - Harrison, D. L.
AU - Helou, G.
AU - Hernández-Monteagudo, C.
AU - Hildebrandt, S. R.
AU - Hivon, E.
AU - Hobson, M.
AU - Holmes, W. A.
AU - Hornstrup, A.
AU - Huffenberger, K. M.
AU - Jaffe, A. H.
AU - Jaffe, T. R.
AU - Jones, W. C.
AU - Juvela, M.
AU - Keihänen, E.
AU - Keskitalo, R.
AU - Kisner, T. S.
AU - Kneissl, R.
AU - Knoche, J.
AU - Kunz, M.
AU - Kurki-Suonio, H.
AU - Lagache, G.
AU - Lähteenmäki, A.
AU - Lamarre, J. M.
AU - Lasenby, A.
AU - Lawrence, C. R.
AU - Leahy, J. P.
AU - Leonardi, R.
AU - Levrier, F.
AU - Liguori, M.
AU - Lilje, P. B.
AU - Linden-Vørnle, M.
AU - López-Caniego, M.
AU - Lubin, P. M.
AU - Macías-Pérez, J. F.
AU - Maffei, B.
AU - Magalhães, A. M.
AU - Maino, D.
AU - Mandolesi, N.
AU - Maris, M.
AU - Marshall, D. J.
AU - Martin, P. G.
AU - Martínez-González, E.
AU - Masi, S.
AU - Matarrese, S.
AU - Mazzotta, P.
AU - Melchiorri, A.
AU - Mendes, L.
AU - Mennella, A.
AU - Migliaccio, M.
AU - Miville-Deschênes, M. A.
AU - Moneti, A.
AU - Montier, L.
AU - Morgante, G.
AU - Mortlock, D.
AU - Munshi, D.
AU - Murphy, J. A.
AU - Naselsky, P.
AU - Nati, F.
AU - Natoli, P.
AU - Netterfield, C. B.
AU - Noviello, F.
AU - Novikov, D.
AU - Novikov, I.
AU - Oxborrow, C. A.
AU - Pagano, L.
AU - Pajot, F.
AU - Paladini, R.
AU - Paoletti, D.
AU - Pasian, F.
AU - Pearson, T. J.
AU - Perdereau, O.
AU - Perotto, L.
AU - Perrotta, F.
AU - Piacentini, F.
AU - Piat, M.
AU - Pietrobon, D.
AU - Plaszczynski, S.
AU - Poidevin, F.
AU - Pointecouteau, E.
AU - Polenta, G.
AU - Popa, L.
AU - Pratt, G. W.
AU - Prunet, S.
AU - Puget, J. L.
AU - Rachen, J. P.
AU - Reach, W. T.
AU - Rebolo, R.
AU - Reinecke, M.
AU - Remazeilles, M.
AU - Renault, C.
AU - Ricciardi, S.
AU - Riller, T.
AU - Ristorcelli, I.
AU - Rocha, G.
AU - Rosset, C.
AU - Roudier, G.
AU - Rubiño-Martín, J. A.
AU - Rusholme, B.
AU - Sandri, M.
AU - Savini, G.
AU - Scott, D.
AU - Spencer, L. D.
AU - Stolyarov, V.
AU - Stompor, R.
AU - Sudiwala, R.
AU - Sutton, D.
AU - Suur-Uski, A. S.
AU - Sygnet, J. F.
AU - Tauber, J. A.
AU - Terenzi, L.
AU - Toffolatti, L.
AU - Tomasi, M.
AU - Tristram, M.
AU - Tucci, M.
AU - Umana, G.
AU - Valenziano, L.
AU - Valiviita, J.
AU - Van Tent, B.
AU - Vielva, P.
AU - Villa, F.
AU - Wade, L. A.
AU - Wandelt, B. D.
AU - Zacchei, A.
AU - Zonca, A.
N1 - Funding Information: The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, J.A., and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/M CTES (Portugal); and PRACE (EU). A description of the Planck Collaboration and a list of its members, including the technical or scientific activities in which they have been involved, can be found at http://www.sciops.esa.int/index.php?project=planck&page=Planck_Collaboration . The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ ERC grant agreement no 267934 and from a joint agreement between University of São Paulo, Brazil, and COFECUB, France (grant nos. USP 2007.1.433.14.2 and COFECUB Uc Te 114/08). We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA), part of the High Energy Astrophysics Science Archive Center (HEASARC). HEASARC/LAMBDA is a service of the Astrophysics Science Division at the NASA Goddard Space Flight Center. Some of the results in this paper have been derived using the HEALPix package.
PY - 2015/4/1
Y1 - 2015/4/1
N2 - This paper presents an overview of the polarized sky as seen by Planck HFI at 353 GHz, which is the most sensitive Planck channel for dust polarization. We construct and analyse maps of dust polarization fraction and polarization angle at 1° resolution, taking into account noise bias and possible systematic effects. The sensitivity of the Planck HFI polarization measurements allows for the first time a mapping of Galactic dust polarized emission on large scales, including low column density regions. We find that the maximum observed dust polarization fraction is high (pmax = 19.8%), in particular in some regions of moderate hydrogen column density (NH < 2 × 1021 cm-2). The polarization fraction displays a large scatter at NH below a few 1021 cm-2. There is a general decrease in the dust polarization fraction with increasing column density above NH ∼ 1 × 1021 cm-2 and in particular a sharp drop above NH ∼ 1.5 × 1022 cm-2. We characterize the spatial structure of the polarization angle using the angle dispersion function. We find that the polarization angle is ordered over extended areas of several square degrees, separated by filamentary structures of high angle dispersion function. These appear as interfaces where the sky projection of the magnetic field changes abruptly without variations in the column density. The polarization fraction is found to be anti-correlated with the dispersion of polarization angles. These results suggest that, at the resolution of 1°, depolarization is due mainly to fluctuations in the magnetic field orientation along the line of sight, rather than to the loss of grain alignment in shielded regions. We also compare the polarization of thermal dust emission with that of synchrotron measured with Planck, low-frequency radio data, and Faraday rotation measurements toward extragalactic sources. These components bear resemblance along the Galactic plane and in some regions such as the Fan and North Polar Spur regions. The poor match observed in other regions shows, however, that dust, cosmic-ray electrons, and thermal electrons generally sample different parts of the line of sight.
AB - This paper presents an overview of the polarized sky as seen by Planck HFI at 353 GHz, which is the most sensitive Planck channel for dust polarization. We construct and analyse maps of dust polarization fraction and polarization angle at 1° resolution, taking into account noise bias and possible systematic effects. The sensitivity of the Planck HFI polarization measurements allows for the first time a mapping of Galactic dust polarized emission on large scales, including low column density regions. We find that the maximum observed dust polarization fraction is high (pmax = 19.8%), in particular in some regions of moderate hydrogen column density (NH < 2 × 1021 cm-2). The polarization fraction displays a large scatter at NH below a few 1021 cm-2. There is a general decrease in the dust polarization fraction with increasing column density above NH ∼ 1 × 1021 cm-2 and in particular a sharp drop above NH ∼ 1.5 × 1022 cm-2. We characterize the spatial structure of the polarization angle using the angle dispersion function. We find that the polarization angle is ordered over extended areas of several square degrees, separated by filamentary structures of high angle dispersion function. These appear as interfaces where the sky projection of the magnetic field changes abruptly without variations in the column density. The polarization fraction is found to be anti-correlated with the dispersion of polarization angles. These results suggest that, at the resolution of 1°, depolarization is due mainly to fluctuations in the magnetic field orientation along the line of sight, rather than to the loss of grain alignment in shielded regions. We also compare the polarization of thermal dust emission with that of synchrotron measured with Planck, low-frequency radio data, and Faraday rotation measurements toward extragalactic sources. These components bear resemblance along the Galactic plane and in some regions such as the Fan and North Polar Spur regions. The poor match observed in other regions shows, however, that dust, cosmic-ray electrons, and thermal electrons generally sample different parts of the line of sight.
KW - Dust, extinction
KW - ISM: clouds
KW - ISM: general
KW - ISM: magnetic fields
KW - Submillimeter: ISM
UR - http://www.scopus.com/inward/record.url?scp=84928007631&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84928007631&partnerID=8YFLogxK
U2 - 10.1051/0004-6361/201424082
DO - 10.1051/0004-6361/201424082
M3 - Article
AN - SCOPUS:84928007631
VL - 576
JO - Astronomy and Astrophysics
JF - Astronomy and Astrophysics
SN - 0004-6361
M1 - A104
ER -