Abstract
Planck allows unbiased mapping of Galactic sub-millimetre and millimetre emission from the most diffuse regions to the densest parts of molecular clouds. We present an early analysis of the Taurus molecular complex, on line-of-sight-averaged data and without component separation. The emission spectrum measured by Planck and IRAS can be fitted pixel by pixel using a single modified blackbody. Some systematic residuals are detected at 353 GHz and 143 GHz, with amplitudes around -7% and +13%, respectively, indicating that the measured spectra are likely more complex than a simple modified blackbody. Significant positive residuals are also detected in the molecular regions and in the 217 GHz and 100 GHz bands, mainly caused by the contribution of the J = 2 → 1 and J = 1 → 0 12CO and 13CO emission lines. We derive maps of the dust temperature T, the dust spectral emissivity index β, and the dust optical depth at 250 μm τ250. The temperature map illustrates the cooling of the dust particles in thermal equilibrium with the incident radiation field, from 16 - 17 K in the diffuse regions to 13 - 14 K in the dense parts. The distribution of spectral indices is centred at 1.78, with a standard deviation of 0.08 and a systematic error of 0.07. We detect a significant T - β anti-correlation. The dust optical depth map reveals the spatial distribution of the column density of the molecular complex from the densest molecular regions to the faint diffuse regions. We use near-infrared extinction and Hi data at 21-cm to perform a quantitative analysis of the spatial variations of the measured dust optical depth at 250 μm per hydrogen atom τ250/NH. We report an increase of τ250/NH by a factor of about 2 between the atomic phase and the molecular phase, which has a strong impact on the equilibrium temperature of the dust particles.
Original language | English (US) |
---|---|
Article number | A25 |
Journal | Astronomy and Astrophysics |
Volume | 536 |
DOIs | |
State | Published - 2011 |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science
Keywords
- Dust, extinction
- Evolution
- ISM: individual objects: Taurus-Auriga molecular cloud
- ISM: structure
- Infrared: ISM
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Planck early results. XXV. Thermal dust in nearby molecular clouds'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Astronomy and Astrophysics, Vol. 536, A25, 2011.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Planck early results. XXV. Thermal dust in nearby molecular clouds
AU - Abergel, A.
AU - Ade, P. A.R.
AU - Aghanim, N.
AU - Arnaud, M.
AU - Ashdown, M.
AU - Aumont, J.
AU - Baccigalupi, C.
AU - Balbi, A.
AU - Banday, A. J.
AU - Barreiro, R. B.
AU - Bartlett, J. G.
AU - Battaner, E.
AU - Benabed, K.
AU - Benoît, A.
AU - Bernard, J. P.
AU - Bersanelli, M.
AU - Bhatia, R.
AU - Bock, J. J.
AU - Bonaldi, A.
AU - Bond, J. R.
AU - Borrill, J.
AU - Bouchet, F. R.
AU - Boulanger, F.
AU - Bucher, M.
AU - Burigana, C.
AU - Cabella, P.
AU - Cardoso, J. F.
AU - Catalano, A.
AU - Cayón, L.
AU - Challinor, A.
AU - Chamballu, A.
AU - Chiang, L. Y.
AU - Chiang, C.
AU - Christensen, P. R.
AU - Clements, D. L.
AU - Colombi, S.
AU - Couchot, F.
AU - Coulais, A.
AU - Crill, B. P.
AU - Cuttaia, F.
AU - Danese, L.
AU - Davies, R. D.
AU - Davis, R. J.
AU - De Bernardis, P.
AU - De Gasperis, G.
AU - De Rosa, A.
AU - De Zotti, G.
AU - Delabrouille, J.
AU - Delouis, J. M.
AU - Désert, F. X.
AU - Dickinson, C.
AU - Dobashi, K.
AU - Donzelli, S.
AU - Doré, O.
AU - Dörl, U.
AU - Douspis, M.
AU - Dupac, X.
AU - Efstathiou, G.
AU - Enßlin, T. A.
AU - Eriksen, H. K.
AU - Finelli, F.
AU - Forni, O.
AU - Frailis, M.
AU - Franceschi, E.
AU - Galeotta, S.
AU - Ganga, K.
AU - Giard, M.
AU - Giardino, G.
AU - Giraud-Héraud, Y.
AU - González-Nuevo, J.
AU - Górski, K. M.
AU - Gratton, S.
AU - Gregorio, A.
AU - Gruppuso, A.
AU - Guillet, V.
AU - Hansen, F. K.
AU - Harrison, D.
AU - Henrot-Versillé, S.
AU - Herranz, D.
AU - Hildebrandt, S. R.
AU - Hivon, E.
AU - Hobson, M.
AU - Holmes, W. A.
AU - Hovest, W.
AU - Hoyland, R. J.
AU - Huffenberger, K. M.
AU - Jaffe, A. H.
AU - Jones, A.
AU - Jones, W. C.
AU - Juvela, M.
AU - Keihänen, E.
AU - Keskitalo, R.
AU - Kisner, T. S.
AU - Kneissl, R.
AU - Knox, L.
AU - Kurki-Suonio, H.
AU - Lagache, G.
AU - Lamarre, J. M.
AU - Lasenby, A.
AU - Laureijs, R. J.
AU - Lawrence, C. R.
AU - Leach, S.
AU - Leonardi, R.
AU - Leroy, C.
AU - Linden-Vørnle, M.
AU - López-Caniego, M.
AU - Lubin, P. M.
AU - MacÍas-Pérez, J. F.
AU - MacTavish, C. J.
AU - Maffei, B.
AU - Mandolesi, N.
AU - Mann, R.
AU - Maris, M.
AU - Marshall, D. J.
AU - Martin, P.
AU - Martínez-González, E.
AU - Masi, S.
AU - Matarrese, S.
AU - Matthai, F.
AU - Mazzotta, P.
AU - McGehee, P.
AU - Meinhold, P. R.
AU - Melchiorri, A.
AU - Mendes, L.
AU - Mennella, A.
AU - Mitra, S.
AU - Miville-Deschênes, M. A.
AU - Moneti, A.
AU - Montier, L.
AU - Morgante, G.
AU - Mortlock, D.
AU - Munshi, D.
AU - Murphy, A.
AU - Naselsky, P.
AU - Natoli, P.
AU - Netterfield, C. B.
AU - Nørgaard-Nielsen, H. U.
AU - Noviello, F.
AU - Novikov, D.
AU - Novikov, I.
AU - Osborne, S.
AU - Pajot, F.
AU - Paladini, R.
AU - Pasian, F.
AU - Patanchon, G.
AU - Perdereau, O.
AU - Perotto, L.
AU - Perrotta, F.
AU - Piacentini, F.
AU - Piat, M.
AU - Plaszczynski, S.
AU - Pointecouteau, E.
AU - Polenta, G.
AU - Ponthieu, N.
AU - Poutanen, T.
AU - Prézeau, G.
AU - Prunet, S.
AU - Puget, J. L.
AU - Reach, W. T.
AU - Rebolo, R.
AU - Reinecke, M.
AU - Renault, C.
AU - Ricciardi, S.
AU - Riller, T.
AU - Ristorcelli, I.
AU - Rocha, G.
AU - Rosset, C.
AU - Rubiño-Martín, J. A.
AU - Rusholme, B.
AU - Sandri, M.
AU - Santos, D.
AU - Savini, G.
AU - Scott, D.
AU - Seiffert, M. D.
AU - Shellard, P.
AU - Smoot, G. F.
AU - Starck, J. L.
AU - Stivoli, F.
AU - Stolyarov, V.
AU - Sudiwala, R.
AU - Sygnet, J. F.
AU - Tauber, J. A.
AU - Terenzi, L.
AU - Toffolatti, L.
AU - Tomasi, M.
AU - Torre, J. P.
AU - Tristram, M.
AU - Tuovinen, J.
AU - Umana, G.
AU - Valenziano, L.
AU - Verstraete, L.
AU - Vielva, P.
AU - Villa, F.
AU - Vittorio, N.
AU - Wade, L. A.
AU - Wandelt, B. D.
AU - Yvon, D.
AU - Zacchei, A.
AU - Zonca, A.
N1 - Funding Information: 0004-6361 1432-0746 EDP Sciences 10.1051/0004-6361/201116483 aa16483-11 2011A%26A...536A..25P Planck early results Interstellar and circumstellar matter Planck early results. XXV. Thermal dust in nearby molecular clouds ⋆ ⋆ Corresponding author: A. Abergel, e-mail: [email protected] Planck Collaboration Abergel A. 46 Ade P. A. R. 70 Aghanim N. 46 Arnaud M. 57 Ashdown M. 55 4 Aumont J. 46 Baccigalupi C. 68 Balbi A. 28 Banday A. J. 74 7 62 Barreiro R. B. 52 Bartlett J. G. 3 53 Battaner E. 76 Benabed K. 47 Benoît A. 45 Bernard J.-P. 74 7 Bersanelli M. 25 40 Bhatia R. 5 Bock J. J. 53 8 Bonaldi A. 36 Bond J. R. 6 Borrill J. 61 71 Bouchet F. R. 47 Boulanger F. 46 Bucher M. 3 Burigana C. 39 Cabella P. 28 Cardoso J.-F. 58 3 47 Catalano A. 3 56 Cayón L. 18 Challinor A. 49 55 9 Chamballu A. 43 Chiang L.-Y. 48 Chiang C. 17 Christensen P. R. 65 29 Clements D. L. 43 Colombi S. 47 Couchot F. 60 Coulais A. 56 Crill B. P. 53 66 Cuttaia F. 39 Danese L. 68 Davies R. D. 54 Davis R. J. 54 de Bernardis P. 24 de Gasperis G. 28 de Rosa A. 39 de Zotti G. 36 68 Delabrouille J. 3 Delouis J.-M. 47 Désert F.-X. 42 Dickinson C. 54 Dobashi K. 14 Donzelli S. 40 50 Doré O. 53 8 Dörl U. 62 Douspis M. 46 Dupac X. 32 Efstathiou G. 49 Enßlin T. A. 62 Eriksen H. K. 50 Finelli F. 39 Forni O. 74 7 Frailis M. 38 Franceschi E. 39 Galeotta S. 38 Ganga K. 3 44 Giard M. 74 7 Giardino G. 33 Giraud-Héraud Y. 3 González-Nuevo J. 68 Górski K. M. 53 78 Gratton S. 55 49 Gregorio A. 26 Gruppuso A. 39 Guillet V. 46 Hansen F. K. 50 Harrison D. 49 55 Henrot-Versillé S. 60 Herranz D. 52 Hildebrandt S. R. 8 59 51 Hivon E. 47 Hobson M. 4 Holmes W. A. 53 Hovest W. 62 Hoyland R. J. 51 Huffenberger K. M. 77 Jaffe A. H. 43 Jones A. 46 Jones W. C. 17 Juvela M. 16 Keihänen E. 16 Keskitalo R. 53 16 Kisner T. S. 61 Kneissl R. 31 5 Knox L. 20 Kurki-Suonio H. 16 34 Lagache G. 46 Lamarre J.-M. 56 Lasenby A. 4 55 Laureijs R. J. 33 Lawrence C. R. 53 Leach S. 68 Leonardi R. 32 33 21 Leroy C. 46 74 7 Linden-Vørnle M. 11 López-Caniego M. 52 Lubin P. M. 21 Macías-Pérez J. F. 59 MacTavish C. J. 55 Maffei B. 54 Mandolesi N. 39 Mann R. 69 Maris M. 38 Marshall D. J. 74 7 Martin P. 6 Martínez-González E. 52 Masi S. 24 Matarrese S. 23 Matthai F. 62 Mazzotta P. 28 McGehee P. 44 Meinhold P. R. 21 Melchiorri A. 24 Mendes L. 32 Mennella A. 25 38 Mitra S. 53 Miville-Deschênes M.-A. 46 6 Moneti A. 47 Montier L. 74 7 Morgante G. 39 Mortlock D. 43 Munshi D. 70 49 Murphy A. 64 Naselsky P. 65 29 Natoli P. 27 2 39 Netterfield C. B. 13 Nørgaard-Nielsen H. U. 11 Noviello F. 46 Novikov D. 43 Novikov I. 65 Osborne S. 73 Pajot F. 46 Paladini R. 72 8 Pasian F. 38 Patanchon G. 3 Perdereau O. 60 Perotto L. 59 Perrotta F. 68 Piacentini F. 24 Piat M. 3 Plaszczynski S. 60 Pointecouteau E. 74 7 Polenta G. 2 37 Ponthieu N. 46 Poutanen T. 34 16 1 Prézeau G. 8 53 Prunet S. 47 Puget J.-L. 46 Reach W. T. 75 Rebolo R. 51 30 Reinecke M. 62 Renault C. 59 Ricciardi S. 39 Riller T. 62 Ristorcelli I. 74 7 Rocha G. 53 8 Rosset C. 3 Rubiño-Martín J. A. 51 30 Rusholme B. 44 Sandri M. 39 Santos D. 59 Savini G. 67 Scott D. 15 Seiffert M. D. 53 8 Shellard P. 9 Smoot G. F. 19 61 3 Starck J.-L. 57 10 Stivoli F. 41 Stolyarov V. 4 Sudiwala R. 70 Sygnet J.-F. 47 Tauber J. A. 33 Terenzi L. 39 Toffolatti L. 12 Tomasi M. 25 40 Torre J.-P. 46 Tristram M. 60 Tuovinen J. 63 Umana G. 35 Valenziano L. 39 Verstraete L. 46 Vielva P. 52 Villa F. 39 Vittorio N. 28 Wade L. A. 53 Wandelt B. D. 47 22 Yvon D. 10 Zacchei A. 38 Zonca A. 21 1 Aalto University Metsähovi Radio Observatory , Metsähovintie 114 , 02540 Kylmälä , Finland 2 Agenzia Spaziale Italiana Science Data Center, c/o ESRIN , via Galileo Galilei , Frascati , Italy 3 Astroparticule et Cosmologie, CNRS (UMR 7164), Université Denis Diderot Paris 7 , Bâtiment Condorcet, 10 rue A. Domon et Léonie Duquet , Paris , France 4 Astrophysics Group, Cavendish Laboratory, University of Cambridge , J J Thomson Avenue , Cambridge CB3 0HE , UK 5 Atacama Large Millimeter/submillimeter Array, ALMA Santiago Central Offices , Alonso de Cordova 3107, Vitacura , Casilla 763 0355 , Santiago , Chile 6 CITA, University of Toronto , 60 St. George St., Toronto , ON M5S 3H8 , Canada 7 CNRS, IRAP , 9 Av. Colonel Roche , BP 44346 , 31028 Toulouse Cedex 4 , France 8 California Institute of Technology , Pasadena , California , USA 9 DAMTP, University of Cambridge, Centre for Mathematical Sciences , Wilberforce Road , Cambridge CB3 0WA , UK 10 DSM/Irfu/SPP, CEA-Saclay , 91191 Gif-sur-Yvette Cedex , France 11 DTU Space, National Space Institute , Juliane Mariesvej 30 , Copenhagen , Denmark 12 Departamento de Física, Universidad de Oviedo , Avda. Calvo Sotelo s/n , Oviedo , Spain 13 Department of Astronomy and Astrophysics, University of Toronto , 50 Saint George Street, Toronto , Ontario , Canada 14 Department of Astronomy and Earth Sciences, Tokyo Gakugei University , Koganei , Tokyo 184-8501 , Japan 15 Department of Physics & Astronomy, University of British Columbia , 6224 Agricultural Road, Vancouver , British Columbia , Canada 16 Department of Physics, Gustaf Hällströmin katu 2a, University of Helsinki , Helsinki , Finland 17 Department of Physics, Princeton University , Princeton , New Jersey , USA 18 Department of Physics, Purdue University , 525 Northwestern Avenue , WestLafayette , Indiana , USA 19 Department of Physics, University of California , Berkeley , California , USA 20 Department of Physics, University of California , One Shields Avenue , Davis , California , USA 21 Department of Physics, University of California , Santa Barbara , California , USA 22 Department of Physics, University of Illinois at Urbana-Champaign , 1110 West Green Street , Urbana , Illinois , USA 23 Dipartimento di Fisica G. Galilei, Università degli Studi di Padova , via Marzolo 8 , 35131 Padova , Italy 24 Dipartimento di Fisica, Università La Sapienza , P. le A. Moro 2 , Roma , Italy 25 Dipartimento di Fisica, Università degli Studi di Milano , via Celoria, 16 , Milano , Italy 26 Dipartimento di Fisica, Università degli Studi di Trieste , via A. Valerio 2 , Trieste , Italy 27 Dipartimento di Fisica, Università di Ferrara , via Saragat 1 , 44122 Ferrara , Italy 28 Dipartimento di Fisica, Università di Roma Tor Vergata , via della Ricerca Scientifica, 1 , Roma , Italy 29 Discovery Center, Niels Bohr Institute , Blegdamsvej 17 , Copenhagen , Denmark 30 Dpto. Astrofísica, Universidad de La Laguna (ULL) , 38206 La Laguna , Tenerife , Spain 31 European Southern Observatory, ESO Vitacura , Alonso de Cordova 3107, Vitacura, Casilla 19001 , Santiago , Chile 32 European Space Agency, ESAC, Planck Science Office, Camino bajo del Castillo, s/n, Urbanización Villafranca del Castillo, Villanueva de la Cañada , Madrid , Spain 33 European Space Agency, ESTEC , Keplerlaan 1 , 2201 AZ Noordwijk , The Netherlands 34 Helsinki Institute of Physics, Gustaf Hällströmin katu 2, University of Helsinki , Helsinki , Finland 35 INAF – Osservatorio Astrofisico di Catania , via S. Sofia 78 , Catania , Italy 36 INAF – Osservatorio Astronomico di Padova , Vicolo dell’Osservatorio 5 , Padova , Italy 37 INAF – Osservatorio Astronomico di Roma , via di Frascati 33 , Monte Porzio Catone , Italy 38 INAF – Osservatorio Astronomico di Trieste , via G.B. Tiepolo 11 , Trieste , Italy 39 INAF/IASF Bologna , via Gobetti 101 , Bologna , Italy 40 INAF/IASF Milano , via E. Bassini 15 , Milano , Italy 41 INRIA, Laboratoire de Recherche en Informatique, Université Paris-Sud 11 , Bâtiment 490 , 91405 Orsay Cedex , France 42 IPAG: Institut de Planétologie et d’Astrophysique de Grenoble, Université Joseph Fourier, Grenoble 1/CNRS-INSU, UMR 5274 , 38041 Grenoble , France 43 Imperial College London, Astrophysics group, Blackett Laboratory , Prince Consort Road , London , SW7 2AZ , UK 44 Infrared Processing and Analysis Center, California Institute of Technology , Pasadena , CA 91125 , USA 45 Institut Néel, CNRS, Université Joseph Fourier Grenoble I , 25 rue des Martyrs , Grenoble , France 46 Institut d’Astrophysique Spatiale, CNRS (UMR8617) Université Paris-Sud 11 , Bâtiment 121 , Orsay , France 47 Institut d’Astrophysique de Paris, CNRS UMR7095, Université Pierre & Marie Curie , 98bis boulevard Arago , Paris , France 48 Institute of Astronomy and Astrophysics, Academia Sinica , Taipei , Taiwan 49 Institute of Astronomy, University of Cambridge , Madingley Road , Cambridge CB3 0HA , UK 50 Institute of Theoretical Astrophysics, University of Oslo , Blindern , Oslo , Norway 51 Instituto de Astrofísica de Canarias , C/Vía Láctea s/n, La Laguna , Tenerife , Spain 52 Instituto de Física de Cantabria (CSIC-Universidad de Cantabria) , Avda. de los Castros s/n , Santander , Spain 53 Jet Propulsion Laboratory, California Institute of Technology , 4800 Oak Grove Drive , Pasadena , California , USA 54 Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester , Oxford Road , Manchester , M13 9PL , UK 55 Kavli Institute for Cosmology Cambridge , Madingley Road , Cambridge , CB3 0HA , UK 56 LERMA, CNRS, Observatoire de Paris , 61 avenue de l’Observatoire , Paris , France 57 Laboratoire AIM, IRFU/Service d’Astrophysique – CEA/DSM – CNRS – Université Paris Diderot, Bât. 709, CEA-Saclay , 91191 Gif-sur-Yvette Cedex , France 58 Laboratoire Traitement et Communication de l’Information, CNRS (UMR 5141) and Télécom ParisTech , 46 rue Barrault , 75634 Paris Cedex 13 , France 59 Laboratoire de Physique Subatomique et de Cosmologie, CNRS/IN2P3, Université Joseph Fourier Grenoble I, Institut National Polytechnique de Grenoble , 53 rue des Martyrs , 38026 Grenoble Cedex , France 60 Laboratoire de l’Accélérateur Linéaire, Université Paris-Sud 11, CNRS/IN2P3 , Orsay , France 61 Lawrence Berkeley National Laboratory , Berkeley , California , USA 62 Max-Planck-Institut für Astrophysik , Karl-Schwarzschild-Str. 1 , 85741 Garching , Germany 63 MilliLab, VTT Technical Research Centre of Finland , Tietotie 3 , Espoo , Finland 64 National University of Ireland, Department of Experimental Physics , Maynooth , Co. Kildare , Ireland 65 Niels Bohr Institute , Blegdamsvej 17 , Copenhagen , Denmark 66 Observational Cosmology, Mail Stop 367-17, California Institute of Technology , Pasadena , CA , 91125 , USA 67 Optical Science Laboratory, University College London , Gower Street , London , UK 68 SISSA, Astrophysics Sector , via Bonomea 265 , 34136 , Trieste , Italy 69 SUPA, Institute for Astronomy, University of Edinburgh, Royal Observatory , Blackford Hill , Edinburgh EH9 3HJ , UK 70 School of Physics and Astronomy, Cardiff University , Queens Buildings, The Parade , Cardiff , CF24 3AA , UK 71 Space Sciences Laboratory, University of California , Berkeley , California , USA 72 Spitzer Science Center, 1200 E. California Blvd. , Pasadena , California , USA 73 Stanford University, Dept of Physics, Varian Physics Bldg , 382 via Pueblo Mall , Stanford , California , USA 74 Université de Toulouse, UPS-OMP, IRAP , 31028 Toulouse Cedex 4 , France 75 Universities Space Research Association, Stratospheric Observatory for Infrared Astronomy , MS 211-3 , Moffett Field , CA 94035 , USA 76 University of Granada, Departamento de Física Teórica y del Cosmos, Facultad de Ciencias , Granada , Spain 77 University of Miami, Knight Physics Building , 1320 Campo Sano Dr. , Coral Gables , Florida , USA 78 Warsaw University Observatory , Aleje Ujazdowskie 4 , 00-478 Warszawa , Poland 01 12 2011 01 12 2011 12 2011 536 aa/2011/12
PY - 2011
Y1 - 2011
N2 - Planck allows unbiased mapping of Galactic sub-millimetre and millimetre emission from the most diffuse regions to the densest parts of molecular clouds. We present an early analysis of the Taurus molecular complex, on line-of-sight-averaged data and without component separation. The emission spectrum measured by Planck and IRAS can be fitted pixel by pixel using a single modified blackbody. Some systematic residuals are detected at 353 GHz and 143 GHz, with amplitudes around -7% and +13%, respectively, indicating that the measured spectra are likely more complex than a simple modified blackbody. Significant positive residuals are also detected in the molecular regions and in the 217 GHz and 100 GHz bands, mainly caused by the contribution of the J = 2 → 1 and J = 1 → 0 12CO and 13CO emission lines. We derive maps of the dust temperature T, the dust spectral emissivity index β, and the dust optical depth at 250 μm τ250. The temperature map illustrates the cooling of the dust particles in thermal equilibrium with the incident radiation field, from 16 - 17 K in the diffuse regions to 13 - 14 K in the dense parts. The distribution of spectral indices is centred at 1.78, with a standard deviation of 0.08 and a systematic error of 0.07. We detect a significant T - β anti-correlation. The dust optical depth map reveals the spatial distribution of the column density of the molecular complex from the densest molecular regions to the faint diffuse regions. We use near-infrared extinction and Hi data at 21-cm to perform a quantitative analysis of the spatial variations of the measured dust optical depth at 250 μm per hydrogen atom τ250/NH. We report an increase of τ250/NH by a factor of about 2 between the atomic phase and the molecular phase, which has a strong impact on the equilibrium temperature of the dust particles.
AB - Planck allows unbiased mapping of Galactic sub-millimetre and millimetre emission from the most diffuse regions to the densest parts of molecular clouds. We present an early analysis of the Taurus molecular complex, on line-of-sight-averaged data and without component separation. The emission spectrum measured by Planck and IRAS can be fitted pixel by pixel using a single modified blackbody. Some systematic residuals are detected at 353 GHz and 143 GHz, with amplitudes around -7% and +13%, respectively, indicating that the measured spectra are likely more complex than a simple modified blackbody. Significant positive residuals are also detected in the molecular regions and in the 217 GHz and 100 GHz bands, mainly caused by the contribution of the J = 2 → 1 and J = 1 → 0 12CO and 13CO emission lines. We derive maps of the dust temperature T, the dust spectral emissivity index β, and the dust optical depth at 250 μm τ250. The temperature map illustrates the cooling of the dust particles in thermal equilibrium with the incident radiation field, from 16 - 17 K in the diffuse regions to 13 - 14 K in the dense parts. The distribution of spectral indices is centred at 1.78, with a standard deviation of 0.08 and a systematic error of 0.07. We detect a significant T - β anti-correlation. The dust optical depth map reveals the spatial distribution of the column density of the molecular complex from the densest molecular regions to the faint diffuse regions. We use near-infrared extinction and Hi data at 21-cm to perform a quantitative analysis of the spatial variations of the measured dust optical depth at 250 μm per hydrogen atom τ250/NH. We report an increase of τ250/NH by a factor of about 2 between the atomic phase and the molecular phase, which has a strong impact on the equilibrium temperature of the dust particles.
KW - Dust, extinction
KW - Evolution
KW - ISM: individual objects: Taurus-Auriga molecular cloud
KW - ISM: structure
KW - Infrared: ISM
UR - http://www.scopus.com/inward/record.url?scp=82955201710&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=82955201710&partnerID=8YFLogxK
U2 - 10.1051/0004-6361/201116483
DO - 10.1051/0004-6361/201116483
M3 - Article
AN - SCOPUS:82955201710
SN - 0004-6361
VL - 536
JO - Astronomy and Astrophysics
JF - Astronomy and Astrophysics
M1 - A25
ER -