Abstract
We use Planck data to detect the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that make up the the cosmic infrared background (CIB). We first perform a stacking analysis towards Planck-confirmed galaxy clusters. We detect infrared emission produced by dusty galaxies inside these clusters and demonstrate that the infrared emission is about 50% more extended than the tSZ effect. Modelling the emission with a Navarro-Frenk-White profile, we find that the radial profile concentration parameter is c500 = 1.00+0.18-0.15 c500=1.00-0.15+0.18. This indicates that infrared galaxies in the outskirts of clusters have higher infrared flux than cluster-core galaxies. We also study the cross-correlation between tSZ and CIB anisotropies, following three alternative approaches based on power spectrum analyses: (i) using a catalogue of confirmed clusters detected in Planck data; (ii) using an all-sky tSZ map built from Planck frequency maps; and (iii) using cross-spectra between Planck frequency maps. With the three different methods, we detect the tSZ-CIB cross-power spectrum at significance levels of (i) 6σ; (ii) 3σ; and (iii) 4σ. We model the tSZ-CIB cross-correlation signature and compare predictions with the measurements. The amplitude of the cross-correlation relative to the fiducial model is AtSZ-CIB = 1.2 ± 0.3. This result is consistent with predictions for the tSZ-CIB cross-correlation assuming the best-fit cosmological model from Planck 2015 results along with the tSZ and CIB scaling relations.
Original language | English (US) |
---|---|
Article number | A23 |
Journal | Astronomy and Astrophysics |
Volume | 594 |
DOIs | |
State | Published - Oct 1 2016 |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science
Keywords
- Galaxies: clusters: general
- Infrared: galaxies
- Large-scale structure of Universe
- Methods: data analysis
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Planck 2015 results: XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
Planck 2015 results : XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation. / Ade, P. A.R.; Aghanim, N.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J. P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Churazov, E.; Clements, D. L.; Colombo, L. P.L.; Combet, C.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; De Bernardis, P.; De Rosa, A.; De Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J. M.; Langer, M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Maciás-Pérez, J. F.; Maffei, B.; Maggio, G.; Maino, D.; Mak, D. S.Y.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M. A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Nati, F.; Natoli, P.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Prunet, S.; Puget, J. L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubinõ-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A. S.; Sygnet, J. F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Welikala, N.; Yvon, D.; Zacchei, A.; Zonca, A.
In: Astronomy and Astrophysics, Vol. 594, A23, 01.10.2016.Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Planck 2015 results
T2 - XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation
AU - Ade, P. A.R.
AU - Aghanim, N.
AU - Arnaud, M.
AU - Aumont, J.
AU - Baccigalupi, C.
AU - Banday, A. J.
AU - Barreiro, R. B.
AU - Bartlett, J. G.
AU - Bartolo, N.
AU - Battaner, E.
AU - Benabed, K.
AU - Benoit-Lévy, A.
AU - Bernard, J. P.
AU - Bersanelli, M.
AU - Bielewicz, P.
AU - Bock, J. J.
AU - Bonaldi, A.
AU - Bonavera, L.
AU - Bond, J. R.
AU - Borrill, J.
AU - Bouchet, F. R.
AU - Burigana, C.
AU - Butler, R. C.
AU - Calabrese, E.
AU - Catalano, A.
AU - Chamballu, A.
AU - Chiang, H. C.
AU - Christensen, P. R.
AU - Churazov, E.
AU - Clements, D. L.
AU - Colombo, L. P.L.
AU - Combet, C.
AU - Comis, B.
AU - Couchot, F.
AU - Coulais, A.
AU - Crill, B. P.
AU - Curto, A.
AU - Cuttaia, F.
AU - Danese, L.
AU - Davies, R. D.
AU - Davis, R. J.
AU - De Bernardis, P.
AU - De Rosa, A.
AU - De Zotti, G.
AU - Delabrouille, J.
AU - Dickinson, C.
AU - Diego, J. M.
AU - Dole, H.
AU - Donzelli, S.
AU - Doré, O.
AU - Douspis, M.
AU - Ducout, A.
AU - Dupac, X.
AU - Efstathiou, G.
AU - Elsner, F.
AU - Enßlin, T. A.
AU - Eriksen, H. K.
AU - Finelli, F.
AU - Flores-Cacho, I.
AU - Forni, O.
AU - Frailis, M.
AU - Fraisse, A. A.
AU - Franceschi, E.
AU - Galeotta, S.
AU - Galli, S.
AU - Ganga, K.
AU - Génova-Santos, R. T.
AU - Giard, M.
AU - Giraud-Héraud, Y.
AU - Gjerløw, E.
AU - González-Nuevo, J.
AU - Górski, K. M.
AU - Gregorio, A.
AU - Gruppuso, A.
AU - Gudmundsson, J. E.
AU - Hansen, F. K.
AU - Harrison, D. L.
AU - Helou, G.
AU - Hernández-Monteagudo, C.
AU - Herranz, D.
AU - Hildebrandt, S. R.
AU - Hivon, E.
AU - Hobson, M.
AU - Hornstrup, A.
AU - Hovest, W.
AU - Huffenberger, K. M.
AU - Hurier, G.
AU - Jaffe, A. H.
AU - Jaffe, T. R.
AU - Jones, W. C.
AU - Keihänen, E.
AU - Keskitalo, R.
AU - Kisner, T. S.
AU - Kneissl, R.
AU - Knoche, J.
AU - Kunz, M.
AU - Kurki-Suonio, H.
AU - Lagache, G.
AU - Lamarre, J. M.
AU - Langer, M.
AU - Lasenby, A.
AU - Lattanzi, M.
AU - Lawrence, C. R.
AU - Leonardi, R.
AU - Levrier, F.
AU - Lilje, P. B.
AU - Linden-Vørnle, M.
AU - López-Caniego, M.
AU - Lubin, P. M.
AU - Maciás-Pérez, J. F.
AU - Maffei, B.
AU - Maggio, G.
AU - Maino, D.
AU - Mak, D. S.Y.
AU - Mandolesi, N.
AU - Mangilli, A.
AU - Maris, M.
AU - Martin, P. G.
AU - Martínez-González, E.
AU - Masi, S.
AU - Matarrese, S.
AU - Melchiorri, A.
AU - Mennella, A.
AU - Migliaccio, M.
AU - Mitra, S.
AU - Miville-Deschênes, M. A.
AU - Moneti, A.
AU - Montier, L.
AU - Morgante, G.
AU - Mortlock, D.
AU - Munshi, D.
AU - Murphy, J. A.
AU - Nati, F.
AU - Natoli, P.
AU - Noviello, F.
AU - Novikov, D.
AU - Novikov, I.
AU - Oxborrow, C. A.
AU - Paci, F.
AU - Pagano, L.
AU - Pajot, F.
AU - Paoletti, D.
AU - Partridge, B.
AU - Pasian, F.
AU - Pearson, T. J.
AU - Perdereau, O.
AU - Perotto, L.
AU - Pettorino, V.
AU - Piacentini, F.
AU - Piat, M.
AU - Pierpaoli, E.
AU - Plaszczynski, S.
AU - Pointecouteau, E.
AU - Polenta, G.
AU - Ponthieu, N.
AU - Pratt, G. W.
AU - Prunet, S.
AU - Puget, J. L.
AU - Rachen, J. P.
AU - Reinecke, M.
AU - Remazeilles, M.
AU - Renault, C.
AU - Renzi, A.
AU - Ristorcelli, I.
AU - Rocha, G.
AU - Rosset, C.
AU - Rossetti, M.
AU - Roudier, G.
AU - Rubinõ-Martín, J. A.
AU - Rusholme, B.
AU - Sandri, M.
AU - Santos, D.
AU - Savelainen, M.
AU - Savini, G.
AU - Scott, D.
AU - Spencer, L. D.
AU - Stolyarov, V.
AU - Stompor, R.
AU - Sunyaev, R.
AU - Sutton, D.
AU - Suur-Uski, A. S.
AU - Sygnet, J. F.
AU - Tauber, J. A.
AU - Terenzi, L.
AU - Toffolatti, L.
AU - Tomasi, M.
AU - Tristram, M.
AU - Tucci, M.
AU - Umana, G.
AU - Valenziano, L.
AU - Valiviita, J.
AU - Van Tent, B.
AU - Vielva, P.
AU - Villa, F.
AU - Wade, L. A.
AU - Wandelt, B. D.
AU - Wehus, I. K.
AU - Welikala, N.
AU - Yvon, D.
AU - Zacchei, A.
AU - Zonca, A.
N1 - Publisher Copyright: © 2016 ESO.
PY - 2016/10/1
Y1 - 2016/10/1
N2 - We use Planck data to detect the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that make up the the cosmic infrared background (CIB). We first perform a stacking analysis towards Planck-confirmed galaxy clusters. We detect infrared emission produced by dusty galaxies inside these clusters and demonstrate that the infrared emission is about 50% more extended than the tSZ effect. Modelling the emission with a Navarro-Frenk-White profile, we find that the radial profile concentration parameter is c500 = 1.00+0.18-0.15 c500=1.00-0.15+0.18. This indicates that infrared galaxies in the outskirts of clusters have higher infrared flux than cluster-core galaxies. We also study the cross-correlation between tSZ and CIB anisotropies, following three alternative approaches based on power spectrum analyses: (i) using a catalogue of confirmed clusters detected in Planck data; (ii) using an all-sky tSZ map built from Planck frequency maps; and (iii) using cross-spectra between Planck frequency maps. With the three different methods, we detect the tSZ-CIB cross-power spectrum at significance levels of (i) 6σ; (ii) 3σ; and (iii) 4σ. We model the tSZ-CIB cross-correlation signature and compare predictions with the measurements. The amplitude of the cross-correlation relative to the fiducial model is AtSZ-CIB = 1.2 ± 0.3. This result is consistent with predictions for the tSZ-CIB cross-correlation assuming the best-fit cosmological model from Planck 2015 results along with the tSZ and CIB scaling relations.
AB - We use Planck data to detect the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that make up the the cosmic infrared background (CIB). We first perform a stacking analysis towards Planck-confirmed galaxy clusters. We detect infrared emission produced by dusty galaxies inside these clusters and demonstrate that the infrared emission is about 50% more extended than the tSZ effect. Modelling the emission with a Navarro-Frenk-White profile, we find that the radial profile concentration parameter is c500 = 1.00+0.18-0.15 c500=1.00-0.15+0.18. This indicates that infrared galaxies in the outskirts of clusters have higher infrared flux than cluster-core galaxies. We also study the cross-correlation between tSZ and CIB anisotropies, following three alternative approaches based on power spectrum analyses: (i) using a catalogue of confirmed clusters detected in Planck data; (ii) using an all-sky tSZ map built from Planck frequency maps; and (iii) using cross-spectra between Planck frequency maps. With the three different methods, we detect the tSZ-CIB cross-power spectrum at significance levels of (i) 6σ; (ii) 3σ; and (iii) 4σ. We model the tSZ-CIB cross-correlation signature and compare predictions with the measurements. The amplitude of the cross-correlation relative to the fiducial model is AtSZ-CIB = 1.2 ± 0.3. This result is consistent with predictions for the tSZ-CIB cross-correlation assuming the best-fit cosmological model from Planck 2015 results along with the tSZ and CIB scaling relations.
KW - Galaxies: clusters: general
KW - Infrared: galaxies
KW - Large-scale structure of Universe
KW - Methods: data analysis
UR - http://www.scopus.com/inward/record.url?scp=84989329199&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84989329199&partnerID=8YFLogxK
U2 - 10.1051/0004-6361/201527418
DO - 10.1051/0004-6361/201527418
M3 - Article
AN - SCOPUS:84989329199
VL - 594
JO - Astronomy and Astrophysics
JF - Astronomy and Astrophysics
SN - 0004-6361
M1 - A23
ER -