Abstract
The Planck full mission cosmic microwave background (CMB) temperature and E-mode polarization maps are analysed to obtain constraints on primordial non-Gaussianity (NG). Using three classes of optimal bispectrum estimators-separable template-fitting (KSW), binned, and modal-we obtain consistent values for the primordial local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result from temperature alone localNL = 2.5 ± 5.7, equilNL=-16 ± 70, fNLlocal=2.5±5.7, fNLequil=-16±70, and orthoNL =-34 ± 32fNLortho=-34±33 (68% CL, statistical). Combining temperature and polarization data we obtain fNLlocal=0.8±5.0, fNLequil=-4±43, and fNLortho=-26±21localNL = 0.8 ± 5.0, equilNL=-4 ± 43, and orthoNL =-26 ± 21 (68% CL, statistical). The results are based on comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques, pass an extensive suite of tests, and are consistent with estimators based on measuring the Minkowski functionals of the CMB. The effect of time-domain de-glitching systematics on the bispectrum is negligible. In spite of these test outcomes we conservatively label the results including polarization data as preliminary, owing to a known mismatch of the noise model in simulations and the data. Beyond estimates of individual shape amplitudes, we present model-independent, three-dimensional reconstructions of the Planck CMB bispectrum and derive constraints on early universe scenarios that generate primordial NG, including general single-field models of inflation, axion inflation, initial state modifications, models producing parity-violating tensor bispectra, and directionally dependent vector models. We present a wide survey of scale-dependent feature and resonance models, accounting for the "look elsewhere" effect in estimating the statistical significance of features. We also look for isocurvature NG, and find no signal, but we obtain constraints that improve significantly with the inclusion of polarization. The primordial trispectrum amplitude in the local model is constrained to be glocalNL = (-0.9 ± 7.7) X 104(68% CL statistical), and we perform an analysis of trispectrum shapes beyond the local case. The global picture that emerges is one of consistency with the premises of the ΛCDM cosmology, namely that the structure we observe today was sourced by adiabatic, passive, Gaussian, and primordial seed perturbations.
Original language | English (US) |
---|---|
Article number | A17 |
Journal | Astronomy and Astrophysics |
Volume | 594 |
DOIs | |
State | Published - Oct 1 2016 |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science
Keywords
- Cosmic background radiation
- Cosmology: observations
- Cosmology: theory
- Early Universe
- Inflation
- Methods: data analysis
Fingerprint Dive into the research topics of 'Planck 2015 results: XVII. Constraints on primordial non-Gaussianity'. Together they form a unique fingerprint.
Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
Planck 2015 results : XVII. Constraints on primordial non-Gaussianity. / Ade, P. A.R.; Aghanim, N.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J. P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J. F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; De Bernardis, P.; De Rosa, A.; De Zotti, G.; Delabrouille, J.; Désert, F. X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hamann, J.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Heavens, A.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kim, J.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lähteenmäki, A.; Lamarre, J. M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Maciás-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marinucci, D.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mcgehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M. A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Münchmeyer, M.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J. L.; Rachen, J. P.; Racine, B.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubinõ-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P.S.; Shiraishi, M.; Smith, K.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutter, P.; Sutton, D.; Suur-Uski, A. S.; Sygnet, J. F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Troja, A.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.
In: Astronomy and Astrophysics, Vol. 594, A17, 01.10.2016.Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Planck 2015 results
T2 - XVII. Constraints on primordial non-Gaussianity
AU - Ade, P. A.R.
AU - Aghanim, N.
AU - Arnaud, M.
AU - Arroja, F.
AU - Ashdown, M.
AU - Aumont, J.
AU - Baccigalupi, C.
AU - Ballardini, M.
AU - Banday, A. J.
AU - Barreiro, R. B.
AU - Bartolo, N.
AU - Basak, S.
AU - Battaner, E.
AU - Benabed, K.
AU - Benoît, A.
AU - Benoit-Lévy, A.
AU - Bernard, J. P.
AU - Bersanelli, M.
AU - Bielewicz, P.
AU - Bock, J. J.
AU - Bonaldi, A.
AU - Bonavera, L.
AU - Bond, J. R.
AU - Borrill, J.
AU - Bouchet, F. R.
AU - Boulanger, F.
AU - Bucher, M.
AU - Burigana, C.
AU - Butler, R. C.
AU - Calabrese, E.
AU - Cardoso, J. F.
AU - Catalano, A.
AU - Challinor, A.
AU - Chamballu, A.
AU - Chiang, H. C.
AU - Christensen, P. R.
AU - Church, S.
AU - Clements, D. L.
AU - Colombi, S.
AU - Colombo, L. P.L.
AU - Combet, C.
AU - Couchot, F.
AU - Coulais, A.
AU - Crill, B. P.
AU - Curto, A.
AU - Cuttaia, F.
AU - Danese, L.
AU - Davies, R. D.
AU - Davis, R. J.
AU - De Bernardis, P.
AU - De Rosa, A.
AU - De Zotti, G.
AU - Delabrouille, J.
AU - Désert, F. X.
AU - Diego, J. M.
AU - Dole, H.
AU - Donzelli, S.
AU - Doré, O.
AU - Douspis, M.
AU - Ducout, A.
AU - Dupac, X.
AU - Efstathiou, G.
AU - Elsner, F.
AU - Enßlin, T. A.
AU - Eriksen, H. K.
AU - Fergusson, J.
AU - Finelli, F.
AU - Forni, O.
AU - Frailis, M.
AU - Fraisse, A. A.
AU - Franceschi, E.
AU - Frejsel, A.
AU - Galeotta, S.
AU - Galli, S.
AU - Ganga, K.
AU - Gauthier, C.
AU - Ghosh, T.
AU - Giard, M.
AU - Giraud-Héraud, Y.
AU - Gjerløw, E.
AU - González-Nuevo, J.
AU - Górski, K. M.
AU - Gratton, S.
AU - Gregorio, A.
AU - Gruppuso, A.
AU - Gudmundsson, J. E.
AU - Hamann, J.
AU - Hansen, F. K.
AU - Hanson, D.
AU - Harrison, D. L.
AU - Heavens, A.
AU - Helou, G.
AU - Henrot-Versillé, S.
AU - Hernández-Monteagudo, C.
AU - Herranz, D.
AU - Hildebrandt, S. R.
AU - Hivon, E.
AU - Hobson, M.
AU - Holmes, W. A.
AU - Hornstrup, A.
AU - Hovest, W.
AU - Huang, Z.
AU - Huffenberger, K. M.
AU - Hurier, G.
AU - Jaffe, A. H.
AU - Jaffe, T. R.
AU - Jones, W. C.
AU - Juvela, M.
AU - Keihänen, E.
AU - Keskitalo, R.
AU - Kim, J.
AU - Kisner, T. S.
AU - Knoche, J.
AU - Kunz, M.
AU - Kurki-Suonio, H.
AU - Lacasa, F.
AU - Lagache, G.
AU - Lähteenmäki, A.
AU - Lamarre, J. M.
AU - Lasenby, A.
AU - Lattanzi, M.
AU - Lawrence, C. R.
AU - Leonardi, R.
AU - Lesgourgues, J.
AU - Levrier, F.
AU - Lewis, A.
AU - Liguori, M.
AU - Lilje, P. B.
AU - Linden-Vørnle, M.
AU - López-Caniego, M.
AU - Lubin, P. M.
AU - Maciás-Pérez, J. F.
AU - Maggio, G.
AU - Maino, D.
AU - Mandolesi, N.
AU - Mangilli, A.
AU - Marinucci, D.
AU - Maris, M.
AU - Martin, P. G.
AU - Martínez-González, E.
AU - Masi, S.
AU - Matarrese, S.
AU - Mcgehee, P.
AU - Meinhold, P. R.
AU - Melchiorri, A.
AU - Mendes, L.
AU - Mennella, A.
AU - Migliaccio, M.
AU - Mitra, S.
AU - Miville-Deschênes, M. A.
AU - Moneti, A.
AU - Montier, L.
AU - Morgante, G.
AU - Mortlock, D.
AU - Moss, A.
AU - Münchmeyer, M.
AU - Munshi, D.
AU - Murphy, J. A.
AU - Naselsky, P.
AU - Nati, F.
AU - Natoli, P.
AU - Netterfield, C. B.
AU - Nørgaard-Nielsen, H. U.
AU - Noviello, F.
AU - Novikov, D.
AU - Novikov, I.
AU - Oxborrow, C. A.
AU - Paci, F.
AU - Pagano, L.
AU - Pajot, F.
AU - Paoletti, D.
AU - Pasian, F.
AU - Patanchon, G.
AU - Peiris, H. V.
AU - Perdereau, O.
AU - Perotto, L.
AU - Perrotta, F.
AU - Pettorino, V.
AU - Piacentini, F.
AU - Piat, M.
AU - Pierpaoli, E.
AU - Pietrobon, D.
AU - Plaszczynski, S.
AU - Pointecouteau, E.
AU - Polenta, G.
AU - Popa, L.
AU - Pratt, G. W.
AU - Prézeau, G.
AU - Prunet, S.
AU - Puget, J. L.
AU - Rachen, J. P.
AU - Racine, B.
AU - Rebolo, R.
AU - Reinecke, M.
AU - Remazeilles, M.
AU - Renault, C.
AU - Renzi, A.
AU - Ristorcelli, I.
AU - Rocha, G.
AU - Rosset, C.
AU - Rossetti, M.
AU - Roudier, G.
AU - Rubinõ-Martín, J. A.
AU - Rusholme, B.
AU - Sandri, M.
AU - Santos, D.
AU - Savelainen, M.
AU - Savini, G.
AU - Scott, D.
AU - Seiffert, M. D.
AU - Shellard, E. P.S.
AU - Shiraishi, M.
AU - Smith, K.
AU - Spencer, L. D.
AU - Stolyarov, V.
AU - Stompor, R.
AU - Sudiwala, R.
AU - Sunyaev, R.
AU - Sutter, P.
AU - Sutton, D.
AU - Suur-Uski, A. S.
AU - Sygnet, J. F.
AU - Tauber, J. A.
AU - Terenzi, L.
AU - Toffolatti, L.
AU - Tomasi, M.
AU - Tristram, M.
AU - Troja, A.
AU - Tucci, M.
AU - Tuovinen, J.
AU - Valenziano, L.
AU - Valiviita, J.
AU - Van Tent, B.
AU - Vielva, P.
AU - Villa, F.
AU - Wade, L. A.
AU - Wandelt, B. D.
AU - Wehus, I. K.
AU - Yvon, D.
AU - Zacchei, A.
AU - Zonca, A.
N1 - Funding Information: The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU).
PY - 2016/10/1
Y1 - 2016/10/1
N2 - The Planck full mission cosmic microwave background (CMB) temperature and E-mode polarization maps are analysed to obtain constraints on primordial non-Gaussianity (NG). Using three classes of optimal bispectrum estimators-separable template-fitting (KSW), binned, and modal-we obtain consistent values for the primordial local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result from temperature alone localNL = 2.5 ± 5.7, equilNL=-16 ± 70, fNLlocal=2.5±5.7, fNLequil=-16±70, and orthoNL =-34 ± 32fNLortho=-34±33 (68% CL, statistical). Combining temperature and polarization data we obtain fNLlocal=0.8±5.0, fNLequil=-4±43, and fNLortho=-26±21localNL = 0.8 ± 5.0, equilNL=-4 ± 43, and orthoNL =-26 ± 21 (68% CL, statistical). The results are based on comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques, pass an extensive suite of tests, and are consistent with estimators based on measuring the Minkowski functionals of the CMB. The effect of time-domain de-glitching systematics on the bispectrum is negligible. In spite of these test outcomes we conservatively label the results including polarization data as preliminary, owing to a known mismatch of the noise model in simulations and the data. Beyond estimates of individual shape amplitudes, we present model-independent, three-dimensional reconstructions of the Planck CMB bispectrum and derive constraints on early universe scenarios that generate primordial NG, including general single-field models of inflation, axion inflation, initial state modifications, models producing parity-violating tensor bispectra, and directionally dependent vector models. We present a wide survey of scale-dependent feature and resonance models, accounting for the "look elsewhere" effect in estimating the statistical significance of features. We also look for isocurvature NG, and find no signal, but we obtain constraints that improve significantly with the inclusion of polarization. The primordial trispectrum amplitude in the local model is constrained to be glocalNL = (-0.9 ± 7.7) X 104(68% CL statistical), and we perform an analysis of trispectrum shapes beyond the local case. The global picture that emerges is one of consistency with the premises of the ΛCDM cosmology, namely that the structure we observe today was sourced by adiabatic, passive, Gaussian, and primordial seed perturbations.
AB - The Planck full mission cosmic microwave background (CMB) temperature and E-mode polarization maps are analysed to obtain constraints on primordial non-Gaussianity (NG). Using three classes of optimal bispectrum estimators-separable template-fitting (KSW), binned, and modal-we obtain consistent values for the primordial local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result from temperature alone localNL = 2.5 ± 5.7, equilNL=-16 ± 70, fNLlocal=2.5±5.7, fNLequil=-16±70, and orthoNL =-34 ± 32fNLortho=-34±33 (68% CL, statistical). Combining temperature and polarization data we obtain fNLlocal=0.8±5.0, fNLequil=-4±43, and fNLortho=-26±21localNL = 0.8 ± 5.0, equilNL=-4 ± 43, and orthoNL =-26 ± 21 (68% CL, statistical). The results are based on comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques, pass an extensive suite of tests, and are consistent with estimators based on measuring the Minkowski functionals of the CMB. The effect of time-domain de-glitching systematics on the bispectrum is negligible. In spite of these test outcomes we conservatively label the results including polarization data as preliminary, owing to a known mismatch of the noise model in simulations and the data. Beyond estimates of individual shape amplitudes, we present model-independent, three-dimensional reconstructions of the Planck CMB bispectrum and derive constraints on early universe scenarios that generate primordial NG, including general single-field models of inflation, axion inflation, initial state modifications, models producing parity-violating tensor bispectra, and directionally dependent vector models. We present a wide survey of scale-dependent feature and resonance models, accounting for the "look elsewhere" effect in estimating the statistical significance of features. We also look for isocurvature NG, and find no signal, but we obtain constraints that improve significantly with the inclusion of polarization. The primordial trispectrum amplitude in the local model is constrained to be glocalNL = (-0.9 ± 7.7) X 104(68% CL statistical), and we perform an analysis of trispectrum shapes beyond the local case. The global picture that emerges is one of consistency with the premises of the ΛCDM cosmology, namely that the structure we observe today was sourced by adiabatic, passive, Gaussian, and primordial seed perturbations.
KW - Cosmic background radiation
KW - Cosmology: observations
KW - Cosmology: theory
KW - Early Universe
KW - Inflation
KW - Methods: data analysis
UR - http://www.scopus.com/inward/record.url?scp=84989261584&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84989261584&partnerID=8YFLogxK
U2 - 10.1051/0004-6361/201525836
DO - 10.1051/0004-6361/201525836
M3 - Article
AN - SCOPUS:84989261584
VL - 594
JO - Astronomy and Astrophysics
JF - Astronomy and Astrophysics
SN - 0004-6361
M1 - A17
ER -