Abstract
Based on cosmic microwave background (CMB) maps from the 2013 Planck Mission data release, this paper presents the detection of the integrated Sachs-Wolfe (ISW) effect, that is, the correlation between the CMB and large-scale evolving gravitational potentials. The significance of detection ranges from 2 to 4σ, depending on which method is used. We investigated three separate approaches, which essentially cover all previous studies, and also break new ground. (i) We correlated the CMB with the Planck reconstructed gravitational lensing potential (for the first time). This detection was made using the lensing-induced bispectrum between the low-â.," and high-â.," temperature anisotropies; the correlation between lensing and the ISW effect has a significance close to 2.5σ. (ii) We cross-correlated with tracers of large-scale structure, which yielded a significance of about 3σ, based on a combination of radio (NVSS) and optical (SDSS) data. (iii) We used aperture photometry on stacked CMB fields at the locations of known large-scale structures, which yielded and confirms a 4σ signal, over a broader spectral range, when using a previously explored catalogue, but shows strong discrepancies in amplitude and scale when compared with expectations. More recent catalogues give more moderate results that range from negligible to 2.5σ at most, but have a more consistent scale and amplitude, the latter being still slightly higher than what is expected from numerical simulations within ΛCMD. Where they can be compared, these measurements are compatible with previous work using data from WMAP, where these scales have been mapped to the limits of cosmic variance. Planck's broader frequency coverage allows for better foreground cleaning and confirms that the signal is achromatic, which makes it preferable for ISW detection. As a final step we used tracers of large-scale structure to filter the CMB data, from which we present maps of the ISW temperature perturbation. These results provide complementary and independent evidence for the existence of a dark energy component that governs the currently accelerated expansion of the Universe.
Original language | English (US) |
---|---|
Article number | A19 |
Journal | Astronomy and Astrophysics |
Volume | 571 |
DOIs | |
State | Published - Nov 1 2014 |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science
Keywords
- Cosmic background radiation
- Dark energy
- Galaxies: clusters: general
- Large-scale structure of Universe
- Methods: data analysis
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Planck 2013 results. XIX. The integrated Sachs-Wolfe effect'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
Planck 2013 results. XIX. The integrated Sachs-Wolfe effect. / Ade, P. A.R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J. P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J. F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L. Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P.L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; De Bernardis, P.; De Rosa, A.; De Zotti, G.; Delabrouille, J.; Delouis, J. M.; Désert, F. X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Fosalba, P.; Frailis, M.; Franceschi, E.; Frommert, M.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Ho, S.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Ilić, S.; Jaffe, A. H.; Jaffe, T. R.; Jasche, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J. M.; Langer, M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Maciás-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marcos-Caballero, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M. A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J. L.; Rachen, J. P.; Racine, B.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubinõ-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Schaefer, B. M.; Schiavon, F.; Scott, D.; Seiffert, M. D.; Shellard, E. P.S.; Spencer, L. D.; Starck, J. L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutter, P.; Sutton, D.; Suur-Uski, A. S.; Sygnet, J. F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Viel, M.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; Xia, J. Q.; Yvon, D.; Zacchei, A.; Zonca, A.
In: Astronomy and Astrophysics, Vol. 571, A19, 01.11.2014.Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Planck 2013 results. XIX. The integrated Sachs-Wolfe effect
AU - Ade, P. A.R.
AU - Aghanim, N.
AU - Armitage-Caplan, C.
AU - Arnaud, M.
AU - Ashdown, M.
AU - Atrio-Barandela, F.
AU - Aumont, J.
AU - Baccigalupi, C.
AU - Banday, A. J.
AU - Barreiro, R. B.
AU - Bartlett, J. G.
AU - Bartolo, N.
AU - Battaner, E.
AU - Benabed, K.
AU - Benoît, A.
AU - Benoit-Lévy, A.
AU - Bernard, J. P.
AU - Bersanelli, M.
AU - Bielewicz, P.
AU - Bobin, J.
AU - Bock, J. J.
AU - Bonaldi, A.
AU - Bonavera, L.
AU - Bond, J. R.
AU - Borrill, J.
AU - Bouchet, F. R.
AU - Bridges, M.
AU - Bucher, M.
AU - Burigana, C.
AU - Butler, R. C.
AU - Cardoso, J. F.
AU - Catalano, A.
AU - Challinor, A.
AU - Chamballu, A.
AU - Chiang, H. C.
AU - Chiang, L. Y.
AU - Christensen, P. R.
AU - Church, S.
AU - Clements, D. L.
AU - Colombi, S.
AU - Colombo, L. P.L.
AU - Couchot, F.
AU - Coulais, A.
AU - Crill, B. P.
AU - Curto, A.
AU - Cuttaia, F.
AU - Danese, L.
AU - Davies, R. D.
AU - Davis, R. J.
AU - De Bernardis, P.
AU - De Rosa, A.
AU - De Zotti, G.
AU - Delabrouille, J.
AU - Delouis, J. M.
AU - Désert, F. X.
AU - Dickinson, C.
AU - Diego, J. M.
AU - Dolag, K.
AU - Dole, H.
AU - Donzelli, S.
AU - Doré, O.
AU - Douspis, M.
AU - Dupac, X.
AU - Efstathiou, G.
AU - Enßlin, T. A.
AU - Eriksen, H. K.
AU - Fergusson, J.
AU - Finelli, F.
AU - Forni, O.
AU - Fosalba, P.
AU - Frailis, M.
AU - Franceschi, E.
AU - Frommert, M.
AU - Galeotta, S.
AU - Ganga, K.
AU - Génova-Santos, R. T.
AU - Giard, M.
AU - Giardino, G.
AU - Giraud-Héraud, Y.
AU - González-Nuevo, J.
AU - Górski, K. M.
AU - Gratton, S.
AU - Gregorio, A.
AU - Gruppuso, A.
AU - Hansen, F. K.
AU - Hanson, D.
AU - Harrison, D.
AU - Henrot-Versillé, S.
AU - Hernández-Monteagudo, C.
AU - Herranz, D.
AU - Hildebrandt, S. R.
AU - Hivon, E.
AU - Ho, S.
AU - Hobson, M.
AU - Holmes, W. A.
AU - Hornstrup, A.
AU - Hovest, W.
AU - Huffenberger, K. M.
AU - Ilić, S.
AU - Jaffe, A. H.
AU - Jaffe, T. R.
AU - Jasche, J.
AU - Jones, W. C.
AU - Juvela, M.
AU - Keihänen, E.
AU - Keskitalo, R.
AU - Kisner, T. S.
AU - Knoche, J.
AU - Knox, L.
AU - Kunz, M.
AU - Kurki-Suonio, H.
AU - Lagache, G.
AU - Lähteenmäki, A.
AU - Lamarre, J. M.
AU - Langer, M.
AU - Lasenby, A.
AU - Laureijs, R. J.
AU - Lawrence, C. R.
AU - Leahy, J. P.
AU - Leonardi, R.
AU - Lesgourgues, J.
AU - Liguori, M.
AU - Lilje, P. B.
AU - Linden-Vørnle, M.
AU - López-Caniego, M.
AU - Lubin, P. M.
AU - Maciás-Pérez, J. F.
AU - Maffei, B.
AU - Maino, D.
AU - Mandolesi, N.
AU - Mangilli, A.
AU - Marcos-Caballero, A.
AU - Maris, M.
AU - Marshall, D. J.
AU - Martin, P. G.
AU - Martínez-González, E.
AU - Masi, S.
AU - Massardi, M.
AU - Matarrese, S.
AU - Matthai, F.
AU - Mazzotta, P.
AU - Meinhold, P. R.
AU - Melchiorri, A.
AU - Mendes, L.
AU - Mennella, A.
AU - Migliaccio, M.
AU - Mitra, S.
AU - Miville-Deschênes, M. A.
AU - Moneti, A.
AU - Montier, L.
AU - Morgante, G.
AU - Mortlock, D.
AU - Moss, A.
AU - Munshi, D.
AU - Naselsky, P.
AU - Nati, F.
AU - Natoli, P.
AU - Netterfield, C. B.
AU - Nørgaard-Nielsen, H. U.
AU - Noviello, F.
AU - Novikov, D.
AU - Novikov, I.
AU - Osborne, S.
AU - Oxborrow, C. A.
AU - Paci, F.
AU - Pagano, L.
AU - Pajot, F.
AU - Paoletti, D.
AU - Partridge, B.
AU - Pasian, F.
AU - Patanchon, G.
AU - Perdereau, O.
AU - Perotto, L.
AU - Perrotta, F.
AU - Piacentini, F.
AU - Piat, M.
AU - Pierpaoli, E.
AU - Pietrobon, D.
AU - Plaszczynski, S.
AU - Pointecouteau, E.
AU - Polenta, G.
AU - Ponthieu, N.
AU - Popa, L.
AU - Poutanen, T.
AU - Pratt, G. W.
AU - Prézeau, G.
AU - Prunet, S.
AU - Puget, J. L.
AU - Rachen, J. P.
AU - Racine, B.
AU - Rebolo, R.
AU - Reinecke, M.
AU - Remazeilles, M.
AU - Renault, C.
AU - Renzi, A.
AU - Ricciardi, S.
AU - Riller, T.
AU - Ristorcelli, I.
AU - Rocha, G.
AU - Rosset, C.
AU - Roudier, G.
AU - Rowan-Robinson, M.
AU - Rubinõ-Martín, J. A.
AU - Rusholme, B.
AU - Sandri, M.
AU - Santos, D.
AU - Savini, G.
AU - Schaefer, B. M.
AU - Schiavon, F.
AU - Scott, D.
AU - Seiffert, M. D.
AU - Shellard, E. P.S.
AU - Spencer, L. D.
AU - Starck, J. L.
AU - Stolyarov, V.
AU - Stompor, R.
AU - Sudiwala, R.
AU - Sunyaev, R.
AU - Sureau, F.
AU - Sutter, P.
AU - Sutton, D.
AU - Suur-Uski, A. S.
AU - Sygnet, J. F.
AU - Tauber, J. A.
AU - Tavagnacco, D.
AU - Terenzi, L.
AU - Toffolatti, L.
AU - Tomasi, M.
AU - Tristram, M.
AU - Tucci, M.
AU - Tuovinen, J.
AU - Umana, G.
AU - Valenziano, L.
AU - Valiviita, J.
AU - Van Tent, B.
AU - Varis, J.
AU - Viel, M.
AU - Vielva, P.
AU - Villa, F.
AU - Vittorio, N.
AU - Wade, L. A.
AU - Wandelt, B. D.
AU - White, M.
AU - Xia, J. Q.
AU - Yvon, D.
AU - Zacchei, A.
AU - Zonca, A.
N1 - Publisher Copyright: © 2014 ESO.
PY - 2014/11/1
Y1 - 2014/11/1
N2 - Based on cosmic microwave background (CMB) maps from the 2013 Planck Mission data release, this paper presents the detection of the integrated Sachs-Wolfe (ISW) effect, that is, the correlation between the CMB and large-scale evolving gravitational potentials. The significance of detection ranges from 2 to 4σ, depending on which method is used. We investigated three separate approaches, which essentially cover all previous studies, and also break new ground. (i) We correlated the CMB with the Planck reconstructed gravitational lensing potential (for the first time). This detection was made using the lensing-induced bispectrum between the low-â.," and high-â.," temperature anisotropies; the correlation between lensing and the ISW effect has a significance close to 2.5σ. (ii) We cross-correlated with tracers of large-scale structure, which yielded a significance of about 3σ, based on a combination of radio (NVSS) and optical (SDSS) data. (iii) We used aperture photometry on stacked CMB fields at the locations of known large-scale structures, which yielded and confirms a 4σ signal, over a broader spectral range, when using a previously explored catalogue, but shows strong discrepancies in amplitude and scale when compared with expectations. More recent catalogues give more moderate results that range from negligible to 2.5σ at most, but have a more consistent scale and amplitude, the latter being still slightly higher than what is expected from numerical simulations within ΛCMD. Where they can be compared, these measurements are compatible with previous work using data from WMAP, where these scales have been mapped to the limits of cosmic variance. Planck's broader frequency coverage allows for better foreground cleaning and confirms that the signal is achromatic, which makes it preferable for ISW detection. As a final step we used tracers of large-scale structure to filter the CMB data, from which we present maps of the ISW temperature perturbation. These results provide complementary and independent evidence for the existence of a dark energy component that governs the currently accelerated expansion of the Universe.
AB - Based on cosmic microwave background (CMB) maps from the 2013 Planck Mission data release, this paper presents the detection of the integrated Sachs-Wolfe (ISW) effect, that is, the correlation between the CMB and large-scale evolving gravitational potentials. The significance of detection ranges from 2 to 4σ, depending on which method is used. We investigated three separate approaches, which essentially cover all previous studies, and also break new ground. (i) We correlated the CMB with the Planck reconstructed gravitational lensing potential (for the first time). This detection was made using the lensing-induced bispectrum between the low-â.," and high-â.," temperature anisotropies; the correlation between lensing and the ISW effect has a significance close to 2.5σ. (ii) We cross-correlated with tracers of large-scale structure, which yielded a significance of about 3σ, based on a combination of radio (NVSS) and optical (SDSS) data. (iii) We used aperture photometry on stacked CMB fields at the locations of known large-scale structures, which yielded and confirms a 4σ signal, over a broader spectral range, when using a previously explored catalogue, but shows strong discrepancies in amplitude and scale when compared with expectations. More recent catalogues give more moderate results that range from negligible to 2.5σ at most, but have a more consistent scale and amplitude, the latter being still slightly higher than what is expected from numerical simulations within ΛCMD. Where they can be compared, these measurements are compatible with previous work using data from WMAP, where these scales have been mapped to the limits of cosmic variance. Planck's broader frequency coverage allows for better foreground cleaning and confirms that the signal is achromatic, which makes it preferable for ISW detection. As a final step we used tracers of large-scale structure to filter the CMB data, from which we present maps of the ISW temperature perturbation. These results provide complementary and independent evidence for the existence of a dark energy component that governs the currently accelerated expansion of the Universe.
KW - Cosmic background radiation
KW - Dark energy
KW - Galaxies: clusters: general
KW - Large-scale structure of Universe
KW - Methods: data analysis
UR - http://www.scopus.com/inward/record.url?scp=84949121404&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84949121404&partnerID=8YFLogxK
U2 - 10.1051/0004-6361/201321526
DO - 10.1051/0004-6361/201321526
M3 - Article
AN - SCOPUS:84949121404
VL - 571
JO - Astronomy and Astrophysics
JF - Astronomy and Astrophysics
SN - 0004-6361
M1 - A19
ER -