Abstract
This paper presents the characterization of the in-flight beams, the beam window functions, and the associated uncertainties for the Planck Low Frequency Instrument (LFI). Knowledge of the beam profiles is necessary for determining the transfer function to go from the observed to the actual sky anisotropy power spectrum. The main beam distortions affect the beam window function, complicating the reconstruction of the anisotropy power spectrum at high multipoles, whereas the sidelobes affect the low and intermediate multipoles. The in-flight assessment of the LFI main beams relies on the measurements performed during Jupiter observations. By stacking the datafrom multiple Jupiter transits, the main beam profiles are measured down to-20 dB at 30 and 44 GHz, and down to-25 dB at 70 GHz. The main beam solid angles are determined to better than 0.2% at each LFI frequency band. The Planck pre-launch optical model is conveniently tuned to characterize the main beams independently of any noise effects. This approach provides an optical model whose beams fully reproduce the measurements in the main beam region, but also allows a description of the beams at power levels lower than can be achieved by the Jupiter measurements themselves. The agreement between the simulated beams and the measured beams is better than 1% at each LFI frequency band. The simulated beams are used for the computation of the window functions for the effective beams. The error budget for the window functions is estimated from both main beam and sidelobe contributions, and accounts for the radiometer bandshapes. The total uncertainties in the effective beam window functions are: 2% and 1.2% at 30 and 44 GHz, respectively (at 600), and 0.7% at 70 GHz (at 1000).
Original language | English (US) |
---|---|
Article number | A4 |
Journal | Astronomy and Astrophysics |
Volume | 571 |
DOIs | |
State | Published - Nov 1 2014 |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science
Keywords
- Cosmic background radiation
- Methods: data analysis
- Telescopes
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Planck 2013 results. IV. Low Frequency Instrument beams and window functions'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
Planck 2013 results. IV. Low Frequency Instrument beams and window functions. / Aghanim, N.; Armitage-Caplan, C.; Arnaud, M. et al.
In: Astronomy and Astrophysics, Vol. 571, A4, 01.11.2014.Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Planck 2013 results. IV. Low Frequency Instrument beams and window functions
AU - Aghanim, N.
AU - Armitage-Caplan, C.
AU - Arnaud, M.
AU - Ashdown, M.
AU - Atrio-Barandela, F.
AU - Aumont, J.
AU - Baccigalupi, C.
AU - Banday, A. J.
AU - Barreiro, R. B.
AU - Battaner, E.
AU - Benabed, K.
AU - Benoît, A.
AU - Benoit-Lévy, A.
AU - Bernard, J. P.
AU - Bersanelli, M.
AU - Bielewicz, P.
AU - Bobin, J.
AU - Bock, J. J.
AU - Bonaldi, A.
AU - Bond, J. R.
AU - Borrill, J.
AU - Bouchet, F. R.
AU - Bridges, M.
AU - Bucher, M.
AU - Burigana, C.
AU - Butler, R. C.
AU - Cardoso, J. F.
AU - Catalano, A.
AU - Chamballu, A.
AU - Chiang, L. Y.
AU - Christensen, P. R.
AU - Church, S.
AU - Colombi, S.
AU - Colombo, L. P.L.
AU - Crill, B. P.
AU - Curto, A.
AU - Cuttaia, F.
AU - Danese, L.
AU - Davies, R. D.
AU - Davis, R. J.
AU - De Bernardis, P.
AU - De Rosa, A.
AU - De Zotti, G.
AU - Delabrouille, J.
AU - Dickinson, C.
AU - Diego, J. M.
AU - Dole, H.
AU - Donzelli, S.
AU - Doré, O.
AU - Douspis, M.
AU - Dupac, X.
AU - Efstathiou, G.
AU - Enßlin, T. A.
AU - Eriksen, H. K.
AU - Finelli, F.
AU - Forni, O.
AU - Frailis, M.
AU - Franceschi, E.
AU - Gaier, T. C.
AU - Galeotta, S.
AU - Ganga, K.
AU - Giard, M.
AU - Giraud-Héraud, Y.
AU - González-Nuevo, J.
AU - Górski, K. M.
AU - Gratton, S.
AU - Gregorio, A.
AU - Gruppuso, A.
AU - Hansen, F. K.
AU - Hanson, D.
AU - Harrison, D.
AU - Henrot-Versillé, S.
AU - Hernández-Monteagudo, C.
AU - Herranz, D.
AU - Hildebrandt, S. R.
AU - Hivon, E.
AU - Hobson, M.
AU - Holmes, W. A.
AU - Hornstrup, A.
AU - Hovest, W.
AU - Huffenberger, K. M.
AU - Jaffe, A. H.
AU - Jaffe, T. R.
AU - Jewell, J.
AU - Jones, W. C.
AU - Juvela, M.
AU - Kangaslahti, P.
AU - Keihänen, E.
AU - Keskitalo, R.
AU - Kiiveri, K.
AU - Kisner, T. S.
AU - Knoche, J.
AU - Knox, L.
AU - Kunz, M.
AU - Kurki-Suonio, H.
AU - Lagache, G.
AU - Lähteenmäki, A.
AU - Lamarre, J. M.
AU - Lasenby, A.
AU - Laureijs, R. J.
AU - Lawrence, C. R.
AU - Leahy, J. P.
AU - Leonardi, R.
AU - Lesgourgues, J.
AU - Liguori, M.
AU - Lilje, P. B.
AU - Linden-Vørnle, M.
AU - Lindholm, V.
AU - López-Caniego, M.
AU - Lubin, P. M.
AU - Maciás-Pérez, J. F.
AU - Maino, D.
AU - Mandolesi, N.
AU - Maris, M.
AU - Marshall, D. J.
AU - Martin, P. G.
AU - Martínez-González, E.
AU - Masi, S.
AU - Massardi, M.
AU - Matarrese, S.
AU - Matthai, F.
AU - Mazzotta, P.
AU - Meinhold, P. R.
AU - Melchiorri, A.
AU - Mendes, L.
AU - Mennella, A.
AU - Migliaccio, M.
AU - Mitra, S.
AU - Moneti, A.
AU - Montier, L.
AU - Morgante, G.
AU - Mortlock, D.
AU - Moss, A.
AU - Munshi, D.
AU - Naselsky, P.
AU - Natoli, P.
AU - Netterfield, C. B.
AU - Nørgaard-Nielsen, H. U.
AU - Novikov, D.
AU - Novikov, I.
AU - O'dwyer, I. J.
AU - Osborne, S.
AU - Paci, F.
AU - Pagano, L.
AU - Paoletti, D.
AU - Partridge, B.
AU - Pasian, F.
AU - Patanchon, G.
AU - Perdereau, O.
AU - Perotto, L.
AU - Perrotta, F.
AU - Pierpaoli, E.
AU - Pietrobon, D.
AU - Plaszczynski, S.
AU - Platania, P.
AU - Pointecouteau, E.
AU - Polenta, G.
AU - Ponthieu, N.
AU - Popa, L.
AU - Poutanen, T.
AU - Pratt, G. W.
AU - Prézeau, G.
AU - Prunet, S.
AU - Puget, J. L.
AU - Rachen, J. P.
AU - Rebolo, R.
AU - Reinecke, M.
AU - Remazeilles, M.
AU - Ricciardi, S.
AU - Riller, T.
AU - Rocha, G.
AU - Rosset, C.
AU - Roudier, G.
AU - Rubinõ-Martín, J. A.
AU - Rusholme, B.
AU - Sandri, M.
AU - Santos, D.
AU - Scott, D.
AU - Seiffert, M. D.
AU - Shellard, E. P.S.
AU - Spencer, L. D.
AU - Starck, J. L.
AU - Stolyarov, V.
AU - Stompor, R.
AU - Sureau, F.
AU - Sutton, D.
AU - Suur-Uski, A. S.
AU - Sygnet, J. F.
AU - Tauber, J. A.
AU - Tavagnacco, D.
AU - Terenzi, L.
AU - Toffolatti, L.
AU - Tomasi, M.
AU - Tristram, M.
AU - Tucci, M.
AU - Tuovinen, J.
AU - Türler, M.
AU - Umana, G.
AU - Valenziano, L.
AU - Valiviita, J.
AU - Van Tent, B.
AU - Varis, J.
AU - Vielva, P.
AU - Villa, F.
AU - Vittorio, N.
AU - Wade, L. A.
AU - Wandelt, B. D.
AU - Zacchei, A.
AU - Zonca, A.
N1 - Funding Information: Planck is too large a project to allow full acknowledgement of all contributions by individuals, institutions, industries, and funding agencies. The main entities involved in the mission operations are as follows. The European Space Agency (ESA) operates the satellite via its Mission Operations Centre located at ESOC (Darmstadt, Germany) and coordinates scientific operations via the Planck Science Office located at ESAC (Madrid, Spain). Two Consortia, comprising around 50 scientific institutes within Europe, the USA, and Canada, and funded by agencies from the participating countries, developed the scientific instruments LFI and HFI, and continue to operate them via Instrument Operations Teams located in Trieste (Italy) and Orsay (France). The Consortia are also responsible for scientific processing of the acquired data. The Consortia are led by the Principal Investigators: J. L. Puget in France for HFI (funded principally by CNES and CNRS/INSU-IN2P3-INP) and N. Mandolesi in Italy for LFI (funded principally via ASI). NASA US Planck Project, based at JPL and involving scientists at many US institutions, contributes significantly to the efforts of these two Consortia. The author list for this paper has been selected by the Planck Science Team, and is composed of individuals from all of the above entities who have made multi-year contributions to the development of the mission. It does not pretend to be inclusive of all contributions. The Planck-LFI project is developed by an International Consortium lead by Italy and involving Canada, Finland, Germany, Norway, Spain, Switzerland, UK, USA. The Italian contribution to Planck is supported by the Italian Space Agency (ASI) and INAF. This work was supported by the Academy of Finland grants 253204, 256265, and 257989. This work was granted access to the HPC resources of CSC made available within the Distributed European Computing Initiative by the PRACE-2IP, receiving funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement RI-283493. We thank CSC – IT Center for Science Ltd (Finland) for computational resources. We acknowledge financial support provided by the Spanish Ministerio de Ciencia e Innovaciõn through the Plan Nacional del Espacio y Plan Nacional de Astronomia y Astrofisica. We acknowledge the Max Planck Institute for Astrophysics Planck Analysis Centre (MPAC), funded by the Space Agency of the German Aerospace Center (DLR) under grant 50OP0901 with resources of the German Federal Ministry of Economics and Technology, and by the Max Planck Society. This work has made use of the Planck satellite simulation package (Level-S), which is assembled by the Max Planck Institute for Astrophysics Planck Analysis Centre (MPAC) Reinecke et al. (2006). We acknowledge financial support provided by the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. Some of the results in this paper have been derived using the HEALPix package Górski et al. (2005). The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, JA and RES (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). A description of the Planck Collaboration and a list of its members, including the technical or scientific activities in which they have been involved, can be found at http://www.sciops.esa.int/index.php?project=planck&page=Planck_Collaboration . Publisher Copyright: © 2014 ESO.
PY - 2014/11/1
Y1 - 2014/11/1
N2 - This paper presents the characterization of the in-flight beams, the beam window functions, and the associated uncertainties for the Planck Low Frequency Instrument (LFI). Knowledge of the beam profiles is necessary for determining the transfer function to go from the observed to the actual sky anisotropy power spectrum. The main beam distortions affect the beam window function, complicating the reconstruction of the anisotropy power spectrum at high multipoles, whereas the sidelobes affect the low and intermediate multipoles. The in-flight assessment of the LFI main beams relies on the measurements performed during Jupiter observations. By stacking the datafrom multiple Jupiter transits, the main beam profiles are measured down to-20 dB at 30 and 44 GHz, and down to-25 dB at 70 GHz. The main beam solid angles are determined to better than 0.2% at each LFI frequency band. The Planck pre-launch optical model is conveniently tuned to characterize the main beams independently of any noise effects. This approach provides an optical model whose beams fully reproduce the measurements in the main beam region, but also allows a description of the beams at power levels lower than can be achieved by the Jupiter measurements themselves. The agreement between the simulated beams and the measured beams is better than 1% at each LFI frequency band. The simulated beams are used for the computation of the window functions for the effective beams. The error budget for the window functions is estimated from both main beam and sidelobe contributions, and accounts for the radiometer bandshapes. The total uncertainties in the effective beam window functions are: 2% and 1.2% at 30 and 44 GHz, respectively (at 600), and 0.7% at 70 GHz (at 1000).
AB - This paper presents the characterization of the in-flight beams, the beam window functions, and the associated uncertainties for the Planck Low Frequency Instrument (LFI). Knowledge of the beam profiles is necessary for determining the transfer function to go from the observed to the actual sky anisotropy power spectrum. The main beam distortions affect the beam window function, complicating the reconstruction of the anisotropy power spectrum at high multipoles, whereas the sidelobes affect the low and intermediate multipoles. The in-flight assessment of the LFI main beams relies on the measurements performed during Jupiter observations. By stacking the datafrom multiple Jupiter transits, the main beam profiles are measured down to-20 dB at 30 and 44 GHz, and down to-25 dB at 70 GHz. The main beam solid angles are determined to better than 0.2% at each LFI frequency band. The Planck pre-launch optical model is conveniently tuned to characterize the main beams independently of any noise effects. This approach provides an optical model whose beams fully reproduce the measurements in the main beam region, but also allows a description of the beams at power levels lower than can be achieved by the Jupiter measurements themselves. The agreement between the simulated beams and the measured beams is better than 1% at each LFI frequency band. The simulated beams are used for the computation of the window functions for the effective beams. The error budget for the window functions is estimated from both main beam and sidelobe contributions, and accounts for the radiometer bandshapes. The total uncertainties in the effective beam window functions are: 2% and 1.2% at 30 and 44 GHz, respectively (at 600), and 0.7% at 70 GHz (at 1000).
KW - Cosmic background radiation
KW - Methods: data analysis
KW - Telescopes
UR - http://www.scopus.com/inward/record.url?scp=84908668770&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84908668770&partnerID=8YFLogxK
U2 - 10.1051/0004-6361/201321544
DO - 10.1051/0004-6361/201321544
M3 - Article
AN - SCOPUS:84908668770
VL - 571
JO - Astronomy and Astrophysics
JF - Astronomy and Astrophysics
SN - 0004-6361
M1 - A4
ER -