Phytoplankton stoichiometry

C. A. Klausmeier, E. Litchman, T. Daufresne, S. A. Levin

Research output: Contribution to journalReview articlepeer-review

98 Scopus citations

Abstract

Because phytoplankton live at the interface between the abiotic and the biotic compartments of ecosystems, they play an important role in coupling multiple nutrient cycles. The quantitative details of how these multiple nutrient cycles intersect is determined by phytoplankton stoichiometry. Here we review some classic work and recent advances on the determinants of phytoplankton stoichiometry and their role in determining ecosystem stoichiometry. First, we use a model of growth with flexible stoichiometry to reexamine Rhee and Goldman's classic chemostat data. We also discuss a recent data compilation by Hall and colleagues that illustrates some limits to phytoplankton flexibility, and a model of physiological adaptation that can account for these results. Second, we use a model of resource allocation to determine the how the optimal nitrogen-to-phosphorus stoichiometry depends on the ecological conditions under which species grow and compete. Third, we discuss Redfield's mechanism for the homeostasis of the oceans' nitrogen-to-phosphorus stoichiometry and show its robustness to additional factors such as iron-limitation and temporal fluctuations. Finally, we suggest areas for future research.

Original languageEnglish (US)
Pages (from-to)479-485
Number of pages7
JournalEcological Research
Volume23
Issue number3
DOIs
StatePublished - May 2008

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics

Keywords

  • Phytoplankton
  • Redfield ratio
  • Stoichiometry
  • Theory

Fingerprint Dive into the research topics of 'Phytoplankton stoichiometry'. Together they form a unique fingerprint.

Cite this