Physical Properties of Interfacial Layers Developed on Weathered Silicates: A Case Study Based on Labradorite Feldspar

Bastien Wild, Damien Daval, Jean Sébastien Micha, Ian C. Bourg, Claire E. White, Alejandro Fernandez-Martinez

Research output: Contribution to journalArticle

Abstract

Amorphous silica-rich surface layers (ASSLs) formed at the interface between silicate materials and reacting fluids are known to strongly influence, at least in some cases, the dissolution rates of silicate phases including soil minerals, glasses, and cements. However, the factors governing the formation of these ASSLs remain largely unknown. Here, we outline a novel approach that uses recent developments in vertical scanning interferometry and in situ synchrotron-based X-ray reflectivity to directly follow the development of ASSLs and the evolution of their physical properties on a representative silicate, labradorite feldspar. Our approach enables independently probing the reactivities of the outer (bulk fluid/ASSL) interface and of the inner (ASSL/pristine mineral) interface in situ, providing a detailed picture of the temporal evolution of the fluid-mineral interface. We investigated the effects of pH, SiO2(aq) concentration, crystallographic orientation, and temperature on the layer thickness, density, and reactivity as well as on the dissolution rate of the primary mineral. The dissolution rate of labradorite crystals increased with temperature according to an apparent activation energy of ∼57 kJ mol-1 and showed no significant difference between crystallographic faces. Both labradorite and ASSL dissolution rates decreased as circum-neutral pH conditions were approached. High SiO2(aq) concentrations resulted in decreased apparent dissolution rates (even though far-from-equilibrium conditions with respect to labradorite were maintained in the bulk fluid) and in an increased ASSL density at least in some conditions (such as low temperature and close-to-neutral pH values). Our results highlight the importance of ASSLs and their complex impact on the dissolution process. In particular, our results provide evidence of a discrepancy between bulk fluid conditions, generally probed and reported, and those actually operating at the interface with the dissolving primary phase, which are of more direct relevance to the dissolution process but are still largely unknown.

Original languageEnglish (US)
Pages (from-to)24520-24532
Number of pages13
JournalJournal of Physical Chemistry C
Volume123
Issue number40
DOIs
StatePublished - Oct 10 2019

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Energy(all)
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films

Fingerprint Dive into the research topics of 'Physical Properties of Interfacial Layers Developed on Weathered Silicates: A Case Study Based on Labradorite Feldspar'. Together they form a unique fingerprint.

  • Cite this