Physical aging of hydroxypropyl methylcellulose acetate succinate via enthalpy recovery

Yejoon Seo, Biao Zuo, Daniele Cangialosi, Rodney D. Priestley

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Amorphous solid dispersions (ASDs) utilize the kinetic stability of the amorphous state to stabilize drug molecules within a glassy polymer matrix. Therefore, understanding the glassy-state stability of the polymer excipient is critical to ASD design and performance. Here, we investigated the physical aging of hydroxypropyl methylcellulose acetate succinate (HPMCAS), a commonly used polymer in ASD formulations. We found that HPMCAS exhibited conventional physical aging behavior when annealed near the glass transition temperature (Tg). In this scenario, structural recovery was facilitated by α-relaxation dynamics. However, when annealed well below Tg, a sub-α-relaxation process facilitated low-temperature physical aging in HPMCAS. Nevertheless, the physical aging rate exhibited no significant change up to 40 K below Tg, below which it exhibited a near monotonic decrease with decreasing temperature. Finally, infrared spectroscopy was employed to assess any effect of physical aging on the chemical structure of HPMCAS, which is known to be susceptible to degradation at temperatures 30 K above its Tg. Our results provide critical insights necessary to understand better the link between the stability of ASDs and physical aging of the glassy polymer matrix.

Original languageEnglish (US)
JournalSoft matter
Volume12
Issue number1
DOIs
StatePublished - Oct 27 2022

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Physical aging of hydroxypropyl methylcellulose acetate succinate via enthalpy recovery'. Together they form a unique fingerprint.

Cite this