Phrase Retrieval Learns Passage Retrieval, Too

Jinhyuk Lee, Alexander Wettig, Danqi Chen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

24 Scopus citations

Abstract

Dense retrieval methods have shown great promise over sparse retrieval methods in a range of NLP problems. Among them, dense phrase retrieval-the most fine-grained retrieval unit-is appealing because phrases can be directly used as the output for question answering and slot filling tasks. In this work, we follow the intuition that retrieving phrases naturally entails retrieving larger text blocks and study whether phrase retrieval can serve as the basis for coarse-level retrieval including passages and documents. We first observe that a dense phrase-retrieval system, without any retraining, already achieves better passage retrieval accuracy (+3-5% in top-5 accuracy) compared to passage retrievers, which also helps achieve superior end-to-end QA performance with fewer passages. Then, we provide an interpretation for why phrase-level supervision helps learn better fine-grained entailment compared to passage-level supervision, and also show that phrase retrieval can be improved to achieve competitive performance in document-retrieval tasks such as entity linking and knowledge-grounded dialogue. Finally, we demonstrate how phrase filtering and vector quantization can reduce the size of our index by 4-10x, making dense phrase retrieval a practical and versatile solution in multi-granularity retrieval.

Original languageEnglish (US)
Title of host publicationEMNLP 2021 - 2021 Conference on Empirical Methods in Natural Language Processing, Proceedings
PublisherAssociation for Computational Linguistics (ACL)
Pages3661-3672
Number of pages12
ISBN (Electronic)9781955917094
StatePublished - 2021
Externally publishedYes
Event2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021 - Virtual, Punta Cana, Dominican Republic
Duration: Nov 7 2021Nov 11 2021

Publication series

NameEMNLP 2021 - 2021 Conference on Empirical Methods in Natural Language Processing, Proceedings

Conference

Conference2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021
Country/TerritoryDominican Republic
CityVirtual, Punta Cana
Period11/7/2111/11/21

All Science Journal Classification (ASJC) codes

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems

Fingerprint

Dive into the research topics of 'Phrase Retrieval Learns Passage Retrieval, Too'. Together they form a unique fingerprint.

Cite this