Abstract
The general objective of quantum control is the manipulation of atomic scale physical and chemical phenomena through the application of external control fields. These tailored fields, or photonic reagents, exhibit systematic properties analogous to those of ordinary laboratory reagents. This analogous behavior is explored further here by considering the controlled response of a family of homologous quantum systems to a single common photonic reagent. A level set of dynamically homologous quantum systems is defined as the family that produces the same value(s) for a target physical observable(s) when controlled by a common photonic reagent. This paper investigates the scope of homologous quantum system control using the level set exploration technique (L-SET). L-SET enables the identification of continuous families of dynamically homologous quantum systems. Each quantum system is specified by a point in a hypercube whose edges are labeled by Hamiltonian matrix elements. Numerical examples are presented with simple finite level systems to illustrate the L-SET concepts. Both connected and disconnected families of dynamically homologous systems are shown to exist.
Original language | English (US) |
---|---|
Article number | 094105 |
Journal | Journal of Chemical Physics |
Volume | 126 |
Issue number | 9 |
DOIs | |
State | Published - 2007 |
All Science Journal Classification (ASJC) codes
- General Physics and Astronomy
- Physical and Theoretical Chemistry