Abstract
It has been demonstrated that p-doped polymer layers are a convenient replacement as hole transport layer (HTL) for the widely used Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), yielding comparable photodetection performances at low light intensities. In this work, we aim to evaluate the response of organic photodetectors (OPDs) with increasing light intensity when p-doped PBDTTT-c is used as HTL. Photocurrent linearity measurements are performed on devices processed with both PEDOT:PSS and p-doped PBDTTT-c to better determine the role of the HTL. We show a deviation of the photocurrent from linearity for light intensities above 10−3 W/cm2 at 0 V applied bias due to distinct mechanisms depending on the HTL material. While space charge limited photocurrent (SCLP) explains the non-linearity at high light intensity for the device processed with PEDOT:PSS, bimolecular recombination is responsible for the loss in linearity when p-doped PBDTTT-c is used as HTL. The replacement of PEDOT:PSS by p-doped PBDTTT-c, which is 6 orders of magnitude less conductive, induces Langevin recombination, causing photocurrent non-linearity. Therefore, this study emphasizes the need for highly conductive transport layers when photodetection applications are targeted, and motivates further improvements in organic semiconductor doping.
Original language | English (US) |
---|---|
Article number | 105450 |
Journal | Organic Electronics |
Volume | 76 |
DOIs | |
State | Published - Jan 2020 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Biomaterials
- General Chemistry
- Condensed Matter Physics
- Materials Chemistry
- Electrical and Electronic Engineering
Keywords
- Organic photodetectors
- Organic semiconductor doping
- Photocurrent linearity