TY - JOUR
T1 - Photoactive peptides for light-initiated tyrosyl radical generation and transport into ribonucleotide reductase
AU - Reece, Steven Y.
AU - Seyedsayamdost, Mohammad R.
AU - Stubbe, Jo Anne
AU - Nocera, Daniel G.
PY - 2007/7/11
Y1 - 2007/7/11
N2 - The mechanism of radical transport in the α2 (R1) subunit of class I E. coli ribonucleotide reductase (RNR) has been investigated by the phototriggered generation of a tyrosyl radical, •Y356, on a 20-mer peptide bound to α2. This peptide, Y-R2C19, is identical to the C-terminal peptide tail of the β2 (R2) subunit and is a known competitive inhibitor of binding of the native β2 protein to α2. •Y356 radical initiation is prompted by excitation (λ ≥ 300 nm) of a proximal anthraquinone, Anq, or benzophenone, BPA, chromophore on the peptide. Transient absorption spectroscopy has been employed to kinetically characterize the radical-producing step by time resolving the semiquinone anion (Anq•-), ketyl radical (•BPA), and Y• photoproducts on (i) BPA-Y and Anq-Y dipeptides and (ii) BPA/Anq-Y-R2C19 peptides. Light-initiated, single-turnover assays have been carried out with the peptide/α2 complex in the presence of [ 14C]-labeled cytidine 5′-diphosphate substrate and ATP allosteric effector. We show that both the Anq-and BPA-containing peptides are competent in deoxycytidine diphosphate formation and turnover occurs via Y731 to Y730 to C439 pathway-dependent radical transport in α2. Experiments with the Y730F mutant exclude a direct superexchange mechanism between C439 and Y731 and are consistent with a PCET model for radical transport in which there is a unidirectional transport of the electron and proton transport among residues of α2.
AB - The mechanism of radical transport in the α2 (R1) subunit of class I E. coli ribonucleotide reductase (RNR) has been investigated by the phototriggered generation of a tyrosyl radical, •Y356, on a 20-mer peptide bound to α2. This peptide, Y-R2C19, is identical to the C-terminal peptide tail of the β2 (R2) subunit and is a known competitive inhibitor of binding of the native β2 protein to α2. •Y356 radical initiation is prompted by excitation (λ ≥ 300 nm) of a proximal anthraquinone, Anq, or benzophenone, BPA, chromophore on the peptide. Transient absorption spectroscopy has been employed to kinetically characterize the radical-producing step by time resolving the semiquinone anion (Anq•-), ketyl radical (•BPA), and Y• photoproducts on (i) BPA-Y and Anq-Y dipeptides and (ii) BPA/Anq-Y-R2C19 peptides. Light-initiated, single-turnover assays have been carried out with the peptide/α2 complex in the presence of [ 14C]-labeled cytidine 5′-diphosphate substrate and ATP allosteric effector. We show that both the Anq-and BPA-containing peptides are competent in deoxycytidine diphosphate formation and turnover occurs via Y731 to Y730 to C439 pathway-dependent radical transport in α2. Experiments with the Y730F mutant exclude a direct superexchange mechanism between C439 and Y731 and are consistent with a PCET model for radical transport in which there is a unidirectional transport of the electron and proton transport among residues of α2.
UR - http://www.scopus.com/inward/record.url?scp=34447512997&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34447512997&partnerID=8YFLogxK
U2 - 10.1021/ja0704434
DO - 10.1021/ja0704434
M3 - Article
C2 - 17567129
AN - SCOPUS:34447512997
SN - 0002-7863
VL - 129
SP - 8500
EP - 8509
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 27
ER -