Phoneme recognition with large hierarchical reservoirs

Fabian Triefenbach, Azarakhsh Jalalvand, Benjamin Schrauwen, Jean Pierre Martens

Research output: Chapter in Book/Report/Conference proceedingConference contribution

125 Scopus citations

Abstract

Automatic speech recognition has gradually improved over the years, but the reliable recognition of unconstrained speech is still not within reach. In order to achieve a breakthrough, many research groups are now investigating new methodologies that have potential to outperform the Hidden Markov Model technology that is at the core of all present commercial systems. In this paper, it is shown that the recently introduced concept of Reservoir Computing might form the basis of such a methodology. In a limited amount of time, a reservoir system that can recognize the elementary sounds of continuous speech has been built. The system already achieves a state-of-the-art performance, and there is evidence that the margin for further improvements is still significant.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 23
Subtitle of host publication24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010
PublisherNeural Information Processing Systems
ISBN (Print)9781617823800
StatePublished - 2010
Externally publishedYes
Event24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010 - Vancouver, BC, Canada
Duration: Dec 6 2010Dec 9 2010

Publication series

NameAdvances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010

Other

Other24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010
Country/TerritoryCanada
CityVancouver, BC
Period12/6/1012/9/10

All Science Journal Classification (ASJC) codes

  • Information Systems

Fingerprint

Dive into the research topics of 'Phoneme recognition with large hierarchical reservoirs'. Together they form a unique fingerprint.

Cite this