TY - JOUR
T1 - Phase transitions and equations of state of alkaline earth fluorides CaF2, SrF2, and BaF2 to Mbar pressures
AU - Dorfman, Susannah M.
AU - Jiang, Fuming
AU - Mao, Zhu
AU - Kubo, Atsushi
AU - Meng, Yue
AU - Prakapenka, Vitali B.
AU - Duffy, Thomas S.
PY - 2010/5/27
Y1 - 2010/5/27
N2 - Phase transitions and equations of state of the alkaline earth fluorides CaF2, SrF2, and BaF2 were examined by static compression to pressures as high as 146 GPa. Angle-dispersive x-ray diffraction experiments were performed on polycrystalline samples in the laser-heated diamond-anvil cell. We confirmed that at pressures less than 10 GPa all three materials undergo a phase transition from the cubic (Fm3̄m) fluorite structure to the orthorhombic (Pnam) cotunnite-type structure. This work has characterized an additional phase transition in CaF2 and SrF 2: these materials were observed to transform to a hexagonal (P 63/mmc) Ni2 In -type structure between 63-79 GPa and 28-29 GPa, respectively, upon laser heating. For SrF2, the Ni2 In -type phase was confirmed by Rietveld refinement. Volumes were determined as a function of pressure for all high-pressure phases and fit to the third-order Birch-Murnaghan equation of state. For CaF2 and SrF2, the fluorite-cotunnite transition results in a volume decrease of 8-10%, while the bulk modulus of the cotunnite-type phase is the same or less than that of the fluorite phase within uncertainty. For all three fluorides, the volume reduction associated with the further transition to the Ni2 In -type phase is ∼5%. The percentage increase in the bulk modulus (ΔK) across the transition is greater when the cation is smaller. While for BaF2, ΔK is 10-30%, ΔK values for SrF2 and CaF2 are 45-65% and 20-40%. Although shock data for CaF2 have been interpreted to show a transition to a highly incompressible phase above 100 GPa, this is not consistent with our static equation of state data.
AB - Phase transitions and equations of state of the alkaline earth fluorides CaF2, SrF2, and BaF2 were examined by static compression to pressures as high as 146 GPa. Angle-dispersive x-ray diffraction experiments were performed on polycrystalline samples in the laser-heated diamond-anvil cell. We confirmed that at pressures less than 10 GPa all three materials undergo a phase transition from the cubic (Fm3̄m) fluorite structure to the orthorhombic (Pnam) cotunnite-type structure. This work has characterized an additional phase transition in CaF2 and SrF 2: these materials were observed to transform to a hexagonal (P 63/mmc) Ni2 In -type structure between 63-79 GPa and 28-29 GPa, respectively, upon laser heating. For SrF2, the Ni2 In -type phase was confirmed by Rietveld refinement. Volumes were determined as a function of pressure for all high-pressure phases and fit to the third-order Birch-Murnaghan equation of state. For CaF2 and SrF2, the fluorite-cotunnite transition results in a volume decrease of 8-10%, while the bulk modulus of the cotunnite-type phase is the same or less than that of the fluorite phase within uncertainty. For all three fluorides, the volume reduction associated with the further transition to the Ni2 In -type phase is ∼5%. The percentage increase in the bulk modulus (ΔK) across the transition is greater when the cation is smaller. While for BaF2, ΔK is 10-30%, ΔK values for SrF2 and CaF2 are 45-65% and 20-40%. Although shock data for CaF2 have been interpreted to show a transition to a highly incompressible phase above 100 GPa, this is not consistent with our static equation of state data.
UR - http://www.scopus.com/inward/record.url?scp=77955448386&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77955448386&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.81.174121
DO - 10.1103/PhysRevB.81.174121
M3 - Article
AN - SCOPUS:77955448386
SN - 1098-0121
VL - 81
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 17
M1 - 174121
ER -