Phase synchronization of fluid-fluid interfaces as hydrodynamically coupled oscillators

Eujin Um, Minjun Kim, Hyoungsoo Kim, Joo H. Kang, Howard A. Stone, Joonwoo Jeong

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Hydrodynamic interactions play a role in synchronized motions of coupled oscillators in fluids, and understanding the mechanism will facilitate development of applications in fluid mechanics. For example, synchronization phenomenon in two-phase flow will benefit the design of future microfluidic devices, allowing spatiotemporal control of microdroplet generation without additional integration of control elements. In this work, utilizing a characteristic oscillation of adjacent interfaces between two immiscible fluids in a microfluidic platform, we discover that the system can act as a coupled oscillator, notably showing spontaneous in-phase synchronization of droplet breakup. With this observation of in-phase synchronization, the coupled droplet generator exhibits a complete set of modes of coupled oscillators, including out-of-phase synchronization and nonsynchronous modes. We present a theoretical model to elucidate how a negative feedback mechanism, tied to the distance between the interfaces, induces the in-phase synchronization. We also identify the criterion for the transition from in-phase to out-of-phase oscillations.

Original languageEnglish (US)
Article number5221
JournalNature communications
Volume11
Issue number1
DOIs
StatePublished - Dec 1 2020

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Phase synchronization of fluid-fluid interfaces as hydrodynamically coupled oscillators'. Together they form a unique fingerprint.

Cite this