Abstract
We address the problem of regret minimization in logistic contextual bandits, where a learner decides among sequential actions or arms given their respective contexts to maximize binary rewards. Using a fast inference procedure with Pólya-Gamma distributed augmentation variables, we propose an improved version of Thompson Sampling, a Bayesian formulation of contextual bandits with near-optimal performance. Our approach, Pólya-Gamma augmented Thompson Sampling (PG-TS), achieves state-of-the-art performance on simulated and real data. PG-TS explores the action space efficiently and exploits high-reward arms, quickly converging to solutions of low regret. Its explicit estimation of the posterior distribution of the context feature covariance leads to substantial empirical gains over approximate approaches. PG-TS is the first approach to demonstrate the benefits of Pólya-Gamma augmentation in bandits and to propose an efficient Gibbs sampler for approximating the analytically unsolvable integral of logistic contextual bandits.
Original language | English (US) |
---|---|
Pages (from-to) | 4624-4633 |
Number of pages | 10 |
Journal | Advances in Neural Information Processing Systems |
Volume | 2018-December |
State | Published - 2018 |
Event | 32nd Conference on Neural Information Processing Systems, NeurIPS 2018 - Montreal, Canada Duration: Dec 2 2018 → Dec 8 2018 |
All Science Journal Classification (ASJC) codes
- Computer Networks and Communications
- Information Systems
- Signal Processing