Abstract
A multi-output Gaussian process (GP) is a flexible Bayesian nonparametric framework that has proven useful in jointly modeling the physiological states of patients in medical time series data. However, capturing the short-term effects of drugs and therapeutic interventions on patient physiological state remains challenging. We propose a novel approach that models the effect of interventions as a hybrid Gaussian process composed of a GP capturing patient baseline physiology convolved with a latent force model capturing effects of treatments on specific physiological features. The combination of a multi-output GP with a time-marked kernel GP leads to a well-characterized model of patients' physiological state across a hospital stay, including response to interventions. Our model leads to analytically tractable cross-covariance functions that allow for scalable inference. Our hierarchical model includes estimates of patient-specific effects but allows sharing of support across patients. Our approach achieves competitive predictive performance on challenging hospital data, where we recover patient-specific response to the administration of three common drugs: one antihypertensive drug and two anticoagulants.
Original language | English (US) |
---|---|
Pages (from-to) | 4045-4055 |
Number of pages | 11 |
Journal | Proceedings of Machine Learning Research |
Volume | 108 |
State | Published - 2020 |
Event | 23rd International Conference on Artificial Intelligence and Statistics, AISTATS 2020 - Virtual, Online Duration: Aug 26 2020 → Aug 28 2020 |
All Science Journal Classification (ASJC) codes
- Artificial Intelligence
- Software
- Control and Systems Engineering
- Statistics and Probability