PatchCleanser: Certifiably Robust Defense against Adversarial Patches for Any Image Classifier

Chong Xiang, Saeed Mahloujifar, Prateek Mittal

Research output: Chapter in Book/Report/Conference proceedingConference contribution

39 Scopus citations

Abstract

The adversarial patch attack against image classification models aims to inject adversarially crafted pixels within a restricted image region (i.e., a patch) for inducing model misclassification. This attack can be realized in the physical world by printing and attaching the patch to the victim object; thus, it imposes a real-world threat to computer vision systems. To counter this threat, we design PatchCleanser as a certifiably robust defense against adversarial patches. In PatchCleanser, we perform two rounds of pixel masking on the input image to neutralize the effect of the adversarial patch. This image-space operation makes PatchCleanser compatible with any state-of-the-art image classifier for achieving high accuracy. Furthermore, we can prove that PatchCleanser will always predict the correct class labels on certain images against any adaptive white-box attacker within our threat model, achieving certified robustness. We extensively evaluate PatchCleanser on the ImageNet, ImageNette, and CIFAR-10 datasets and demonstrate that our defense achieves similar clean accuracy as state-of-the-art classification models and also significantly improves certified robustness from prior works. Remarkably, PatchCleanser achieves 83.9% top-1 clean accuracy and 62.1% top-1 certified robust accuracy against a 2%-pixel square patch anywhere on the image for the 1000-class ImageNet dataset.

Original languageEnglish (US)
Title of host publicationProceedings of the 31st USENIX Security Symposium, Security 2022
PublisherUSENIX Association
Pages2065-2082
Number of pages18
ISBN (Electronic)9781939133311
StatePublished - 2022
Event31st USENIX Security Symposium, Security 2022 - Boston, United States
Duration: Aug 10 2022Aug 12 2022

Publication series

NameProceedings of the 31st USENIX Security Symposium, Security 2022

Conference

Conference31st USENIX Security Symposium, Security 2022
Country/TerritoryUnited States
CityBoston
Period8/10/228/12/22

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Safety, Risk, Reliability and Quality

Fingerprint

Dive into the research topics of 'PatchCleanser: Certifiably Robust Defense against Adversarial Patches for Any Image Classifier'. Together they form a unique fingerprint.

Cite this