Patch dynamics with buffers for homogenization problems

Giovanni Samaey, Ioannis G. Kevrekidis, Dirk Roose

Research output: Contribution to journalArticlepeer-review

47 Scopus citations


An important class of problems exhibits smooth behaviour on macroscopic space and time scales, while only a microscopic evolution law is known. For such time-dependent multi-scale problems, an "equation-free" framework has been proposed, of which patch dynamics is an essential component. Patch dynamics is designed to perform numerical simulations of an unavailable macroscopic equation on macroscopic time and length scales; it uses appropriately initialized simulations of the available microscopic model in a number of small boxes (patches), which cover only a fraction of the space-time domain. We show that it is possible to use arbitrary boundary conditions for these patches, provided that suitably large buffer regions "shield" the boundary artefacts from the interior of the patches. We analyze the accuracy of this scheme for a diffusion homogenization problem with periodic heterogeneity and illustrate the approach with a set of numerical examples, which include a non-linear reaction-diffusion equation and the Kuramoto-Sivashinsky equation.

Original languageEnglish (US)
Pages (from-to)264-287
Number of pages24
JournalJournal of Computational Physics
Issue number1
StatePublished - Mar 20 2006

All Science Journal Classification (ASJC) codes

  • Numerical Analysis
  • Modeling and Simulation
  • Physics and Astronomy (miscellaneous)
  • General Physics and Astronomy
  • Computer Science Applications
  • Computational Mathematics
  • Applied Mathematics


  • Equation-free methods
  • Gap-tooth scheme
  • Homogenization
  • Multi-scale computation
  • Patch dynamics


Dive into the research topics of 'Patch dynamics with buffers for homogenization problems'. Together they form a unique fingerprint.

Cite this