PASS-GLM: Polynomial approximate sufficient statistics for scalable Bayesian GLM inference

Jonathan H. Huggins, Ryan P. Adams, Tamara Broderick

Research output: Contribution to journalConference articlepeer-review

7 Scopus citations

Abstract

Generalized linear models (GLMs) - such as logistic regression, Poisson regression, and robust regression - provide interpretable models for diverse data types. Probabilistic approaches, particularly Bayesian ones, allow coherent estimates of uncertainty, incorporation of prior information, and sharing of power across experiments via hierarchical models. In practice, however, the approximate Bayesian methods necessary for inference have either failed to scale to large data sets or failed to provide theoretical guarantees on the quality of inference. We propose a new approach based on constructing polynomial approximate sufficient statistics for GLMs (PASS-GLM). We demonstrate that our method admits a simple algorithm as well as trivial streaming and distributed extensions that do not compound error across computations. We provide theoretical guarantees on the quality of point (MAP) estimates, the approximate posterior, and posterior mean and uncertainty estimates. We validate our approach empirically in the case of logistic regression using a quadratic approximation and show competitive performance with stochastic gradient descent, MCMC, and the Laplace approximation in terms of speed and multiple measures of accuracy - including on an advertising data set with 40 million data points and 20, 000 covariates.

Original languageEnglish (US)
Pages (from-to)3612-3622
Number of pages11
JournalAdvances in Neural Information Processing Systems
Volume2017-December
StatePublished - Jan 1 2017
Event31st Annual Conference on Neural Information Processing Systems, NIPS 2017 - Long Beach, United States
Duration: Dec 4 2017Dec 9 2017

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint Dive into the research topics of 'PASS-GLM: Polynomial approximate sufficient statistics for scalable Bayesian GLM inference'. Together they form a unique fingerprint.

Cite this