Parker Solar Probe observations of He/H abundance variations in SEP events inside 0.5 au

C. M.S. Cohen, E. R. Christian, A. C. Cummings, A. J. Davis, M. I. Desai, G. A. De Nolfo, J. Giacalone, M. E. Hill, C. J. Joyce, A. W. Labrador, R. A. Leske, W. H. Matthaeus, D. J. McComas, R. L. McNutt, R. A. Mewaldt, D. G. Mitchell, J. G. Mitchell, J. S. Rankin, E. C. Roelof, N. A. SchwadronE. C. Stone, J. R. Szalay, M. E. Wiedenbeck, A. Vourlidas, S. D. Bale, M. Pulupa, R. J. MacDowall

Research output: Contribution to journalArticlepeer-review

12 Scopus citations


Aims. The Parker Solar Probe (PSP) orbit provides an opportunity to study the inner heliosphere at distances closer to the Sun than previously possible. Due to the solar minimum conditions, the initial orbits of PSP yielded only a few solar energetic particle (SEP) events for study. Recently during the fifth orbit, at distances from 0.45 to 0.3 au, the energetic particle suite on PSP, Integrated Science Investigation of the Sun (IS⊙ IS), observed a series of six SEP events, adding to the limited number of SEP events studied inside of 0.5 au. Variations in the H and He spectra and the He/H abundance ratio are examined and discussed in relation to the identified solar source regions and activity. Methods. IS⊙ IS measures the energetic particle environment from ~20 keV to >100 MeV/nuc. Six events were selected using the ~1 MeV proton intensities, and while small, they were sufficient to calculate proton and helium spectra from ~1 to ~10 MeV/nuc. For the three larger events, the He/H ratio as a function of energy was determined. Using the timing of the associated radio bursts, solar sources were identified for each event and the eruptions were examined in extreme ultraviolet emission. Results. The largest of the selected events has peak ~1 MeV proton intensities of 3.75 (cm2 sr s MeV)-1. Within uncertainties, the He and H spectra have similar power law forms with indices ranging from -2.3 to -3.3. For the three largest events, the He/H ratios are found to be relatively energy independent; however, the ratios differ substantially with values of 0.0033 ± 0.0013, 0.177 ± 0.047, and 0.016 ± 0.009. An additional compositional variation is evident in both the 3He and electron signatures. These variations are particularly interesting as the three larger events are likely a result of similar eruptions from the same active region.

Original languageEnglish (US)
Article numberA23
JournalAstronomy and Astrophysics
StatePublished - Jun 1 2021

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science


  • Solar-terrestrial relations
  • Sun: activity
  • Sun: particle emission


Dive into the research topics of 'Parker Solar Probe observations of He/H abundance variations in SEP events inside 0.5 au'. Together they form a unique fingerprint.

Cite this