Abstract
Let NF (n,k,r) denote the maximum number of columns in an n-row matrix with entries in a finite field NF in which each column has at most r nonzero entries and every k columns are linearly independent over N F. We obtain near-optimal upper bounds for NF (n,k,r) in the case k > r. Namely, we show that NF (n,k,r) ≫ n r/2 + cr/k where c ≈ 4/3 for large k. Our method is based on a novel reduction of the problem to the extremal problem for cycles in graphs, and yields a fast algorithm for finding short linear dependencies. We present additional applications of this method to a problem on hypergraphs and a problem in combinatorial number theory.
| Original language | English (US) |
|---|---|
| Pages (from-to) | 163-185 |
| Number of pages | 23 |
| Journal | Combinatorica |
| Volume | 28 |
| Issue number | 2 |
| DOIs | |
| State | Published - Mar 2008 |
| Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Discrete Mathematics and Combinatorics
- Computational Mathematics