@inproceedings{fa6ac79868164dac9da71d44c98cb185,
title = "Pare: A paper-reviewer matching approach using a common topic space",
abstract = "Finding the right reviewers to assess the quality of conference submissions is a time consuming process for conference organizers. Given the importance of this step, various automated reviewer-paper matching solutions have been proposed to alleviate the burden. Prior approaches, including bag-of-words models and probabilistic topic models have been inadequate to deal with the vocabulary mismatch and partial topic overlap between a paper submission and the reviewer's expertise. Our approach, the common topic model, jointly models the topics common to the submission and the reviewer's profile while relying on abstract topic vectors. Experiments and insightful evaluations on two datasets demonstrate that the proposed method achieves consistent improvements compared to available state-of-the-art implementations of paper-reviewer matching.",
author = "Omer Anjum and Hongyu Gong and Suma Bhat and Jinjun Xiong and Hwu, {Wen Mei}",
note = "Publisher Copyright: {\textcopyright} 2019 Association for Computational Linguistics; 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019 ; Conference date: 03-11-2019 Through 07-11-2019",
year = "2019",
language = "English (US)",
series = "EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference",
publisher = "Association for Computational Linguistics",
pages = "518--528",
booktitle = "EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference",
}