Parallel single-shot measurement and coherent control of solid-state spins below the diffraction limit

Songtao Chen, Mouktik Raha, Christopher M. Phenicie, Salim Ourari, Jeff D. Thompson

Research output: Contribution to journalArticlepeer-review

95 Scopus citations

Abstract

Solid-state spin defects are a promising platform for quantum science and technology. The realization of larger-scale quantum systems with solid-state defects will require high-fidelity control over multiple defects with nanoscale separations, with strong spin-spin interactions for multi-qubit logic operations and the creation of entangled states. We demonstrate an optical frequency-domain multiplexing technique, allowing high-fidelity initialization and single-shot spin measurement of six rare-earth (Er3+) ions, within the subwavelength volume of a single, silicon photonic crystal cavity. We also demonstrate subwavelength control over coherent spin rotations by using an optical AC Stark shift. Our approach may be scaled to large numbers of ions with arbitrarily small separation and is a step toward realizing strongly interacting atomic defect ensembles with applications to quantum information processing and fundamental studies of many-body dynamics.

Original languageEnglish (US)
Pages (from-to)592-595
Number of pages4
JournalScience
Volume370
Issue number6516
DOIs
StatePublished - Oct 30 2020

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Parallel single-shot measurement and coherent control of solid-state spins below the diffraction limit'. Together they form a unique fingerprint.

Cite this