P-adic L-functions and Euler systems: A tale in two trilogies

Massimo Bertolini, Francesc Castella, Henri Darmon, Samit Dasgupta, Kartik Prasanna, Victor Rotger

Research output: Chapter in Book/Report/Conference proceedingChapter

5 Scopus citations

Abstract

This chapter surveys six different special value formulae for p-adic L-functions, stressing their common features and their eventual arithmetic applications via Kolyvagin’s theory of “Euler systems”, in the spirit of Coates-Wiles and Kato-Perrin-Riou.

Original languageEnglish (US)
Title of host publicationAutomorphic Forms and Galois Representations
Subtitle of host publicationvolume1
PublisherCambridge University Press
Pages52-101
Number of pages50
ISBN (Electronic)9781107446335
ISBN (Print)9781107691926
DOIs
StatePublished - Jan 1 2014

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

Fingerprint Dive into the research topics of 'P-adic L-functions and Euler systems: A tale in two trilogies'. Together they form a unique fingerprint.

  • Cite this

    Bertolini, M., Castella, F., Darmon, H., Dasgupta, S., Prasanna, K., & Rotger, V. (2014). P-adic L-functions and Euler systems: A tale in two trilogies. In Automorphic Forms and Galois Representations: volume1 (pp. 52-101). Cambridge University Press. https://doi.org/10.1007/9781107446335.004