Abstract
The oxidation and reduction of a redox-active aryl-substituted bis(imino)pyridine iron dicarbonyl has been explored to determine whether electron-transfer events are ligand- or metal-based or a combination of both. A series of bis(imino)pyridine iron dicarbonyl compounds, [(iPrPDI) Fe(CO)2]-, (iPrPDI)Fe(CO)2, and [(iPrPDI)Fe(CO)2]+ [iPrPDI = 2,6-(2,6-iPr2C6H3N=CMe) 2C5H3N], which differ by three oxidation states, were prepared and the electronic structures evaluated using a combination of spectroscopic techniques and, in two cases, [( iPrPDI)Fe(CO)2]+ and [(iPrPDI)Fe(CO) 2], metrical parameters from X-ray diffraction. The data establish that the cationic iron dicarbonyl complex is best described as a low-spin iron(I) compound (SFe = 1/2) with a neutral bis(imino)pyridine chelate. The anionic iron dicarbonyl, [(iPrPDI) Fe(CO)2]-, is also best described as an iron(I) compound but with a two-electron-reduced bis(imino)pyridine. The covalency of the neutral compound, (iPrPDI)Fe(CO)2, suggests that both the oxidative and reductive events are not ligand- or metal-localized but a result of the cooperativity of both entities.
Original language | English (US) |
---|---|
Pages (from-to) | 9888-9895 |
Number of pages | 8 |
Journal | Inorganic Chemistry |
Volume | 50 |
Issue number | 20 |
DOIs | |
State | Published - Oct 17 2011 |
All Science Journal Classification (ASJC) codes
- Inorganic Chemistry
- Physical and Theoretical Chemistry