Overexpanding coronal mass ejections at high heliographic latitudes: Observations and simulations

J. T. Gosling, Pete Riley, D. J. McComas, V. J. Pizzo

Research output: Contribution to journalArticlepeer-review

70 Scopus citations

Abstract

Ulysses observations reveal that most coronal mass ejections (CMEs) observed in the solar wind far from the Sun at high heliographic latitudes have large radial widths and are still expanding as they pass the spacecraft. CME radial widths ranging between 0.5 and 2.5 AU have been observed at heliocentric distances between 1.4 and 4.6 AU and at latitudes greater than 22°. A CME may expand simply because it is ejected from the Sun with a leading edge speed that is greater than its trailing edge speed. Rarefaction waves produced by relative motion between a CME and the surrounding wind also can cause a CME to expand. Finally, a CME may expand because it is ejected into the wind with an internal pressure that is greater than that of the surrounding wind. In the latter case, which we have called "overexpansion," the expansion tends to drive compressive waves into the surrounding solar wind; these waves commonly steepen into shocks at large distances from the Sun. The relative importance of these various expansion processes differs from event to event depending upon initial conditions within the CME and the surrounding wind. Using Ulysses observations and a simple one-dimensional, gasdynamic code, we have explored how initial conditions affect the radial evolution of solar wind disturbances associated with overexpanding CMEs. We find good qualitative agreement between the results of our simulations and Ulysses observations of such disturbances.

Original languageEnglish (US)
Article number97JA01304
Pages (from-to)1941-1954
Number of pages14
JournalJournal of Geophysical Research: Space Physics
Volume103
Issue numberA2
StatePublished - 1998
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Geochemistry and Petrology
  • Geophysics
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Atmospheric Science
  • Astronomy and Astrophysics
  • Oceanography

Fingerprint

Dive into the research topics of 'Overexpanding coronal mass ejections at high heliographic latitudes: Observations and simulations'. Together they form a unique fingerprint.

Cite this