Overcoming Beam Squint in mmWave MIMO Channel Estimation: A Bayesian Multi-Band Sparsity Approach

Le Xu, Lei Cheng, Ngai Wong, Yik Chung Wu, H. Vincent Poor

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

The beam squint effect, which manifests in different steering matrices in different sub-bands, has been widely considered a challenge in millimeter wave (mmWave) multi-input multi-output (MIMO) channel estimation. Existing methods either require specific forms of the precoding/combining matrix, which restrict their general practicality, or simply ignore the beam squint effect by only making use of a single sub-band for channel estimation. Recognizing that different steering matrices are coupled by the same set of unknown channel parameters, this paper proposes to exploit the common sparsity structure of the virtual channel model so that signals from different sub-bands can be jointly utilized to enhance the performance of channel estimation. A probabilistic model is built to induce the common sparsity in the spatial domain, and the first-order Taylor expansion is adopted to get rid of the grid mismatch in the dictionaries. To learn the model parameters, a variational expectation-maximization (EM) algorithm is derived, which automatically obtains the balance between the likelihood function and the common sparsity prior information, and is applicable to arbitrary forms of precoding/combining matrices. Simulation results show the superior estimation accuracy of the proposed algorithm over existing methods under different noise powers and system configurations.

Original languageEnglish (US)
Pages (from-to)1219-1234
Number of pages16
JournalIEEE Transactions on Signal Processing
Volume72
DOIs
StatePublished - 2024
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Electrical and Electronic Engineering

Keywords

  • Bayesian model
  • Channel estimation
  • beam-squint effect
  • dual-wideband
  • mmWave MIMO-OFDM

Fingerprint

Dive into the research topics of 'Overcoming Beam Squint in mmWave MIMO Channel Estimation: A Bayesian Multi-Band Sparsity Approach'. Together they form a unique fingerprint.

Cite this