TY - GEN
T1 - OSQP
T2 - UKACC 12th International Conference on Control, CONTROL 2018
AU - Stellato, Bartolomeo
AU - Banjac, Goran
AU - Goulart, Paul
AU - Bemporad, Alberto
AU - Boyd, Stephen
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018/10/31
Y1 - 2018/10/31
N2 - We present a general purpose solver for quadratic programs based on the alternating direction method of multipliers, employing a novel operator splitting technique that requires the solution of a quasi-definite linear system with the same coefficient matrix in each iteration. Our algorithm is very robust, placing no requirements on the problem data such as positive definiteness of the objective function or linear independence of the constraint functions. It is division-free once an initial matrix factorization is carried out, making it suitable for real-time applications in embedded systems. In addition, our technique is the first operator splitting method for quadratic programs able to reliably detect primal and dual infeasible problems from the algorithm iterates. The method also supports factorization caching and warm starting, making it particularly efficient when solving parametrized problems arising in finance, control, and machine learning. Our open-source C implementation OSQP has a small footprint, is library-free, and has been extensively tested on many problem instances from a wide variety of application areas. It is typically ten times faster than competing interior point methods, and sometimes much more when factorization caching or warm start is used.
AB - We present a general purpose solver for quadratic programs based on the alternating direction method of multipliers, employing a novel operator splitting technique that requires the solution of a quasi-definite linear system with the same coefficient matrix in each iteration. Our algorithm is very robust, placing no requirements on the problem data such as positive definiteness of the objective function or linear independence of the constraint functions. It is division-free once an initial matrix factorization is carried out, making it suitable for real-time applications in embedded systems. In addition, our technique is the first operator splitting method for quadratic programs able to reliably detect primal and dual infeasible problems from the algorithm iterates. The method also supports factorization caching and warm starting, making it particularly efficient when solving parametrized problems arising in finance, control, and machine learning. Our open-source C implementation OSQP has a small footprint, is library-free, and has been extensively tested on many problem instances from a wide variety of application areas. It is typically ten times faster than competing interior point methods, and sometimes much more when factorization caching or warm start is used.
UR - http://www.scopus.com/inward/record.url?scp=85056894483&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85056894483&partnerID=8YFLogxK
U2 - 10.1109/CONTROL.2018.8516834
DO - 10.1109/CONTROL.2018.8516834
M3 - Conference contribution
AN - SCOPUS:85056894483
T3 - 2018 UKACC 12th International Conference on Control, CONTROL 2018
SP - 339
BT - 2018 UKACC 12th International Conference on Control, CONTROL 2018
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 5 September 2018 through 7 September 2018
ER -