Abstract
The in vivo continuous evolution system OrthoRep (orthogonal replication) is a powerful strategy for rapid enzyme evolution in Saccharomyces cerevisiae that diversifies genes at a rate exceeding the endogenous genome mutagenesis rate by several orders of magnitude. However, it is difficult to neofunctionalize genes using OrthoRep partly because of the way selection pressures are applied. Here we combine OrthoRep with optogenetics in a selection strategy we call OptoRep, which allows fine-tuning of selection pressure with light. With this capability, we evolved a truncated form of the endogenous monocarboxylate transporter JEN1 (JEN1t) into a de novo mevalonate importer. We demonstrate the functionality of the evolved JEN1t (JEN1tY180C/G) in the production of farnesene, a renewable aviation biofuel, from mevalonate fed to fermentation media or produced by microbial consortia. This study shows that the light-induced complementation of OptoRep may improve the ability to evolve functions not currently accessible for selection, while its fine tunability of selection pressure may allow the continuous evolution of genes whose desired function has a restrictive range between providing effective selection and cellular viability.
Original language | English (US) |
---|---|
Journal | Molecular Systems Biology |
DOIs | |
State | Accepted/In press - 2025 |
All Science Journal Classification (ASJC) codes
- Information Systems
- General Biochemistry, Genetics and Molecular Biology
- General Immunology and Microbiology
- General Agricultural and Biological Sciences
- Computational Theory and Mathematics
- Applied Mathematics
Keywords
- Continuous Evolution
- JEN1
- Mevalonate Transporter Evolution
- Optogenetics
- OrthoRep