Origins of escherichia coli growth rate and cell shape changes at high external osmolality

Teuta Pilizota, Joshua W. Shaevitz

Research output: Contribution to journalArticle

13 Scopus citations

Abstract

In Escherichia coli, a sudden increase in external concentration causes a pressure drop across the cell envelope, followed by an active recovery. After recovery, and if the external osmolality remains high, cells have been shown to grow more slowly, smaller, and at reduced turgor pressure. Despite the fact that the active recovery is a key stress response, the nature of these changes and how they relate to each other is not understood. Here, we use fluorescence imaging of single cells during hyperosmotic shocks, combined with custom made microfluidic devices, to show that cells fully recover their volume to the initial, preshock value and continue to grow at a slower rate immediately after the recovery. We show that the cell envelope material properties do not change after hyperosmotic shock, and that cell shape recovers along with cell volume. Taken together, these observations indicate that the turgor pressure recovers to its initial value so that reduced turgor is not responsible for the reduced growth rate observed immediately after recovery. To determine the point at which the reduction in cell size and turgor pressure occurs after shock, we measured the volume of E. coli cells at different stages of growth in bulk cultures. We show that cell volume reaches the same maximal level irrespective of the osmolality of the media. Based on these measurements, we propose that turgor pressure is used as a feedback variable for osmoregulatory pumps instead of being directly responsible for the reduction in growth rates. Reestablishment of turgor to its initial value might ensure correct attachment of the inner membrane and cell wall needed for cell wall biosynthesis.

Original languageEnglish (US)
Pages (from-to)1962-1969
Number of pages8
JournalBiophysical Journal
Volume107
Issue number8
DOIs
StatePublished - Oct 21 2014

All Science Journal Classification (ASJC) codes

  • Biophysics

Fingerprint Dive into the research topics of 'Origins of escherichia coli growth rate and cell shape changes at high external osmolality'. Together they form a unique fingerprint.

  • Cite this